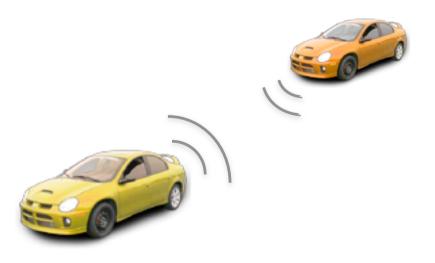


DIVANet'11 November 4th, 2011 Miami, Florida, USA

Optimizing OLSR in VANETs with DE: A Comprehensive Study

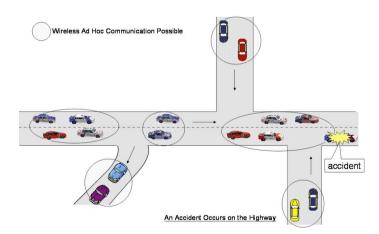
Design and Analysis of Intelligent Vehicular Networks and Applications **DIVANet'11**

<u>Jamal Toutouh</u> and Enrique Alba University of Málaga



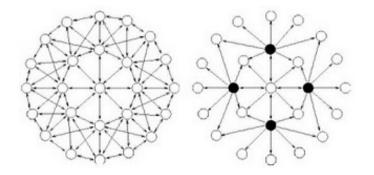
Outline

- 1 Introduction and Motivation
- Methodology
- Experimental Results
- 4 Conclusions and Future Work

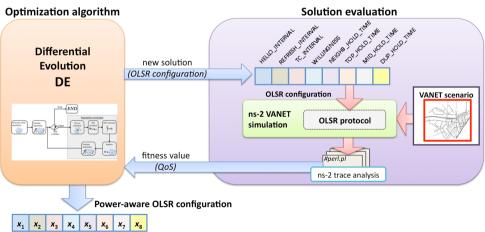


1. Introduction and Motivation. Routing in VANET

- ➤ Routing is a challenging task:
 - High-mobility
 - Presence of obstacles
 - Medium access problems


- Frequent topology changes
- Network fragmentations
- Packet loss
- There is no central entity manager

➤ It is crucial to provide with **efficient** protocols to offer the **highest** reliability and lowest delays



- ➤ Optimized Link State Routing (OLSR) is specifically designed for mobile ad hoc networks with low bandwidth and high mobility
 - It has been analyzed in VANETs because it offers a competitive QoS
 - end-to-end delay and routing path lengths
 - Excessive load: <u>Overhearing problem</u> in large and dense networks
 - Its performance is regulated by a set of configuration parameters

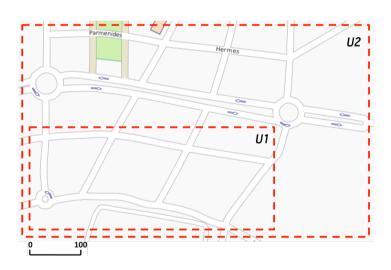
- **DE-OLSR** is an **efficiently** and **automatically tuned** version of OLSR
 - •Off-line optimization strategy based on DE and Ns-2
 - Optimizing QoS:
 - **PDR** (Packet Delivery Ratio)
 - **E2ED** (End-to-End Delay)
 - NRL (Normalized Routing Load)

- **DE-OLSR** is an **efficiently** and **automatically tuned** version of OLSR
 - Off-line optimization strategy based on DE and Ns-2
 - Optimizing QoS: PDR, NRL, and E2ED
 - •Initial experiments: DE-OLSR outperforms OLSR in terms of QoS

OLSR configuration		PDR	NRL	E2ED
	#1	90.00%	1170.02 kbps	1197.25 ms
Gómez et al.	#2	90.00%	554.75 kbps	1208.91 ms
	#3	66.00%	208.84 kbps	2435.22 ms
RFC 3626		80.00%	328.42 kbps	1347.22 ms
DE-OLSR		94.00%	68.34 kbps	8.36 ms

But, is it a fair comparison?

- >VANETs are dynamic networks and results are scenario related
- A comprehensive study is necessary to compare VANET protocols
- The use of a **set of VANET scenarios** (different situations) and **statistical tools** is recommended


OLSR configuration		PDR	NRL	E2ED
	#1	90.00%	1170.02 kbps	1197.25 ms
Gómez et al.	#2	90.00%	554.75 kbps	1208.91 ms
	#3	66.00%	208.84 kbps	2435.22 ms
RFC 3626		80.00%	328.42 kbps	1347.22 ms
DE-OLSR		94.00%	68.34 kbps	8.36 ms

2. Methodology. VANET Scenarios

- ➤ Two different real areas (U1 and U2) from Málaga (Spain) SUMO
 - Three road traffic densities
 - •Six different network workloads (CBR rates):
 - low rates: 33, 66, and 100 kbps
 - high rates: 333, 666, and 1000 kbps

Scenario	Area Size	# Vehicles	CBR sources
		L = 10	5
U1	120,000 m ²	M =15	8
		H =20	10
U2		L =20	10
	240,000 m ²	M =30	15
		H =40	20

2. Methodology. Urban VANET Analysis

- ➤ We analyzed the experiments from three different points of view:
 - Geographical area size
 - •U1: 120,000 m²
 - •U2: 240,000 m²

- Road traffic density
 - •low density (L): 1/12,000 (veh/m²)
 - •medium density (M): 1/8,000 (veh/m²)
 - •high density (H): 1/6,000 (veh/m²)

- Network load
 - •low rates: 33, 66, and 100 kbps
 - •high rates: 333, 666, and 1000 kbps
- > Four different metrics:
 - •PDR (Packet Delivery Ratio)
 - **E2ED** (End-to-End Delay)

- •NRL (Normalized Routing Load)
- •RPL (Routing Path Length)
- Comparison in terms of average results and statistical tests

(Wilcoxon signed rank)

Wilcoxon signed-rank test:

▲ Statistical difference

△ Not statistical difference

8/17

- Geographical Area Sizes
- Network Workload
- Road Traffic Density
- Global Analysis

3. Experimental Analysis. Geographical Area Sizes

- ➤ Both protocols are degraded to the size of the area
- ➤ PDR: similar behaviour, both versions delivered more than 67%
- ➤ NRL: DE-OLSR outperforms OLSR by 45% (U2) and 72% (U1)
- >RPL: OLSR generates statistically shorter routing paths
- **E2ED: DE-OLSR** requires shorter times

Wilcoxon signed-rank test:

Statistical difference

△ Not statistical difference

		DE-OLSR				OLSR			
_		PDR	NRL	RPL	E2ED	PDR	NRL	RPL	E2ED
scenario	U1	69.81	▲0.11	1.66	△143	▲70.90	0.19	▲1.41	202
size	U2	△68.12	▲0.12	1.45	▲284	67.65	0.17	▲1.26	370

- Geographical Area Sizes
- Network Workload
- Road Traffic Density
- Global Analysis

3. Experimental Analysis. Network Workload

- ➤ Both protocols perform worsen as data traffic increases
- **▶PDR:** Low rates DE-OLSR outperform OLSR (5%), but high rates is the reverse (without statistical difference)
- ➤ NRL: OLSR generates almost twice the load of DE-OLSR
- ➤ RPL: OLSR computes significantly shorter paths (between 16% and 31%)
- **E2ED:** DE-OLSR sent packets require statistically shorter times

			DE-OLSR				OLSR			
		PDR	NRL	RPL	E2ED	PDR	NRL	RPL	E2ED	
	low	△90.72	▲0.17	1.66	▲ 18	85.73	0.28	▲1.27	269	
CBR rates	high	47.20	▲0.04	1.63	▲ 409	△52.68	0.08	▲1.40	303	

- Geographical Area Sizes
- Network Workload
- Road Traffic Density
- Global Analysis

3. Experimental Analysis. Road traffic density

- ➤ PDR: DE-OLSR provides the best PDR in Low traffic densities, and OLSR in Medium. Worst performance in High densities
- ➤NRL: OLSR increases its routing (211%) but DE-OLSR is more scalable (39%)
- ➤ RPL: In Low density similar performance, in the other OLSR use shorter paths
- ➤ E2ED: DE-OLSR outperform significantly OLSR,
 Low density -> highest E2ED because highest mobility

	DE-OLSR				OLSR				
		PDR	NRL	RPL	E2ED	PDR	NRL	RPL	E2ED
	L	△81.54	△0.10	1.28	△359	73.55	0.09	△1.26	429
traffic density	M	71.24	▲0.10	1.37	▲87	▲77.05	0.17	▲1.11	102
density	Н	54.11	▲0.13	2.03	▲ 196	△57.02	0.28	▲1.63	326

- Geographical Area Sizes
- Network Workload
- Road Traffic Density
- Global Analysis

3. Experimental Analysis. Global Performance Analysis

				DLSR		OLSR			
		PDR	NRL	RPL	E2ED	PDR	NRL	RPL	E2ED
average all experiment	ation	68.97	▲0.11	1.56	▲214	△69.20	0.18	▲1.34	286
scenario	U1	69.81	▲0.11	1.66	△143	▲70.90	0.19	▲1.41	202
size U	U2	△68.12	▲0.12	1.45	▲284	67.65	0.17	▲1.26	370
CDD votes	low	△90.72	▲0.17	1.66	▲ 18	85.73	0.28	▲1.27	269
CBR rates	high	47.20	▲0.04	1.63	▲ 409	△52.68	0.08	▲ 1.40	303
	L	△81.54	△0.10	1.28	△359	73.55	0.09	△1.26	429
traffic density	М	71.24	▲0.10	1.37	▲87	▲77.05	0.17	▲1.11	102
uensity	Н	54.11	▲0.13	2.03	▲ 196	△57.02	0.28	1.63	326

- Geographical Area Sizes
- Network Workload
- Road Traffic Density
- Global Analysis

3. Experimental Analysis. Global Performance Analysis

			DE-C	DLSR		OLSR			
		PDR	NRL	RPL	E2ED	PDR	NRL	RPL	E2ED
averag experir	rimentation 68.97 ▲0.11 1.56 ▲214 △ 69.20 0.18 ▲1.34						286		
scena	114	CO 01	A O 11	1.66	A 112	A 70 00	0.10	A 1 Л1	202
•There is no significantly difference between both resulted PDR									370
CDD wa		O	•						269
CBR ra		·						_	303
	•DE-OLSR generates statistically lower routing load and data								429
traffic densit	раскетѕ та	ackets take shorter times							102
uensit									326

4. Conclusions and Future work. Conclusions

➤ In this work, we study the improvements of applying **optimized protocols in VANETs.** Specifically, we compare the two different configurations of the OLSR (standard RFC 3626 and DE-OLSR)

➤ We have defined **36 urban VANET scenarios** and analyzed four metrics (PDR, NRL, RPL, and E2ED) by using **Wilcoxon statistical tests**

4. Conclusions and Future work. Conclusions

- ➤OLSR computes shorter paths but generating excessive routing load (problems of congestion and scalability)
- ➤ Using **DE-OLSR** the nodes **economically access** the medium, leaving a larger bandwidth for data packets, requiring **shorter delay times**
- ➤ No significant differences between their PDR
- ➤ DE-OLSR is better-suited for VANETs since it is lighter in terms of resources consumption and able of larger scalability than OLSR, offering close maximum throughput

4. Conclusions and Future work. Conclusions

- ➤OLSR computes shorter paths but generating excessive routing load (problems of congestion and scalability)
- ➤ Using **DE-OLSR** the nodes **economically access** the medium, leaving a larger bandwidth for data packets, requiring **shorter delay times**
- ➤ No significant differences between their PDR
- ➤ DE-OLSR is better-suited for VANETs since it is lighter in terms of resources consumption and able of larger scalability than OLSR, offering close maximum throughput

4. Conclusions and Future work. Future Work

- Analyzing the application of other optimization techniques in order to obtain protocols of larger efficiency e.g. OLSR for VANETs
- Extending our testbed with new still larger urban areas, highways, and assorted workloads to generate more VANET instances
- ➤ Performing outdoor tests (using real vehicles travelling through different kinds of roads) in order to validate the simulation result

DIVANet'11

November 4th, 2011 Miami, Florida, USA

Thank you for your attention...

jamal@lcc.uma.es www.jamal.es

DIRICOM: Design of Wireless Communication Networks [2008-2012]

http://diricom.lcc.uma.es

CARLINK: Wireless Traffic Service Platform for Linking Cars [2006-2008]

http://carlink.lcc.uma.es

DIVANet'11 November 4th, 2011 Miami, Florida, USA

Thank you for your atention

jamal@lcc.uma.es www.jamal.es

DIRICOM: Design of Wireless Communication Networks [2008-2012]

http://diricom.lcc.uma.es

CARLINK: Wireless Traffic Service Platform for Linking Cars [2006-2008]

http://carlink.lcc.uma.es

2. OLSR and DE-OLSR

- ➤ DE-OLSR is an efficiently and automatically tuned version of OLSR
 - Off-line optimization strategy based on DE and Ns-2
 - Optimizing QoS: PDR, E2ED, and NRL

Parameter	OLSR	DE-OLSR
HELLO INTERVAL	2.0 s	3.13 s
REFRESH INTERVAL	2.0 s	3.15 s
TC INTERVAL	5.0 s	45.24 s
WILLINGNESS	3	1
NEIGHB HOLD TIME	6.0 s	3.56 s
TOP HOLD TIME	15.0 s	103.14 s
MID HOLD TIME	15.0 s	141.05 s
DUP HOLD TIME	30.0 s	67.79 s

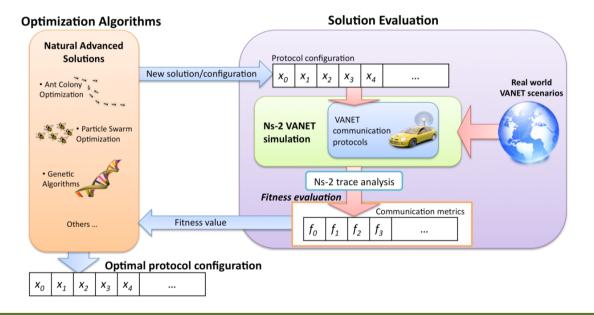
•Initial experiments: DE-OLSR outperforms OLSR in terms of QoS

2. Methodology. Network Specifications

- ➤ Vehicles were configured with **WAVE** (IEEE 802.11p) standard Ns-2
 - •Nakagami radio propagation model
 - •WAVE standard is completed by using Unex (DCMA-86P2) WiFi transceiver parameters

Simulation time: 180 seconds

Parameter	Value
Propagation model	Nakagami (Urban)
Carrier frequency	5.89 Ghz
Channel bandwidth	6 Mbps
PHY/MAC Protocol	IEEE 802.11p
Routing Protocol	OLSR or DE-OLSR
Transport Protocol	UDP
CBR Packet Size	1024 bytes
CBR Data Rate	33, 66, 100,
	333 , 666 , and 1000 kbps
CBR Time	30 s


- VANETs Optimization
- Routing in VANETs
- OLSR vs DE-OLSR

1. Introduction and Motivation. VANETs Optimization

To improve protocols performance we are using an automatic optimization tool coupling **Metaheuristic algorithms** and **VANET**

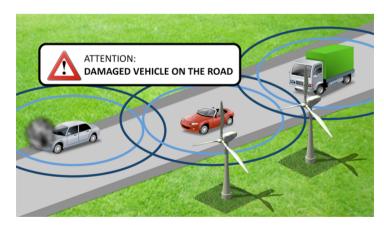
simulation

DIRICOM: Design of Wireless Communication Networks [2008-2012]

http://diricom.lcc.uma.es

CARLINK: Wireless Traffic Service Platform for Linking Cars [2006-2008]

http://carlink.lcc.uma.es


Introduction and Motivation
OLSR and DE-OLSR
Methodology
Experimental Results
Conclusions and Future Work

- VANET and ITS
- VANET Optimization
- Related Work

1. Introduction and Motivation. VANETs and ITS

- ➤ Vehicular ad-hoc networks (VANETs) are emerging new communication and information technologies to integrate vehicles, elements of roadside infrastructure, sensors, and pedestrian personal devices (smartphones, PDAs, etc.) by using self-configuring wireless ad-hoc networks.
- ➤ Enabling Intelligent Transportation Systems (ITS):
 - Safety
 - Transport Efficiency
 - •Multimedia content distribution
- ➤ IEEE 802.11 (WiFi) based technologies:
 - **WAVE: IEEE 802.11p and IEEE 1609**

