

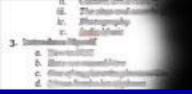
IWCMC 2011

Istanbul, Turkey 5-8 July 2011

Performance Analysis of Optimized VANET Protocols in Real World Tests

Jamal Toutouh and Enrique Alba

University of Málaga



LENGUAJES Y CIENCIAS DE LA COMPUTACIÓN UNIVERSIDAD DE MÁLAGA

Jamal Toutouh and Enrique Alba

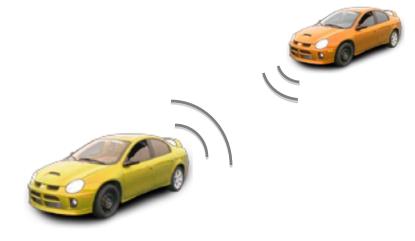
Outline

Introduction and Motivation Outdoor CARLAB Overview Experimental Results Conclusions and Future Work

IWCMC 2011

Istanbul, Turkey 5-8 July 2011

Introduction and Motivation


Outdoor CARLAB Overview

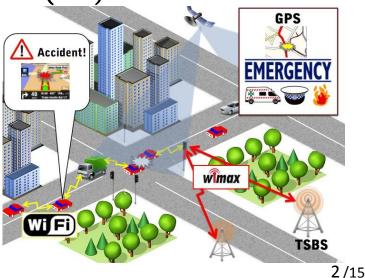
Experimental Results

Conclusions and Future Work

•VANET and ITS •VANET Optimization •VANET Evaluation •Motivation

IWCMC 2011

Istanbul, Turkey 5-8 July 2011


1. Introduction and Motivation. VANETs and ITS

➢ Vehicular ad-hoc networks (VANETs) are emerging new communication and information technologies to integrate vehicles, elements of roadside infrastructure, sensors, and pedestrian personal devices (smartphones, PDAs, etc.) by using self-configuring wireless ad-hoc networks.

Enabling Intelligent Transportation Systems (ITS):

- Safety
- Transport Efficiency
- Multimedia content distribution

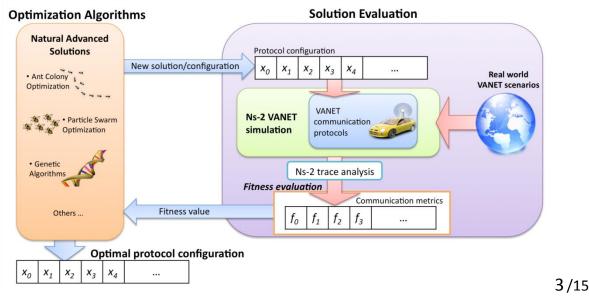
IEEE 802.11 (WiFi) based technologies:
 WAVE: IEEE 802.11p and IEEE 1609

•VANET and ITS •VANET Optimization •VANET Evaluation •Motivation

IWCMC 2011

Istanbul, Turkey 5-8 July 2011

1. Introduction and Motivation. VANET Optimization


➢It is crucial to provide with an efficient configuration of the communication protocols to offer the best quality-of-service (QoS)

- High-mobility
- Presence of obstacles
- Congestion

- Frequent topology changes
- Network fragmentations
- Packet loss

>Automatic optimization tool coupling Metaheuristic algorithms

and VANET simulation

VANET and ITS
VANET Optimization
VANET Evaluation
Motivation

IWCMC 2011

Istanbul, Turkey 5-8 July 2011

1. Introduction and Motivation. VANET Evaluation

➢Currently, the evaluation of the VANET's protocols and applications is carried out by means of simulations

➢The simulation presents the following important advantages over outdoor experiments:

•easier and cheaper

• simplier to analyze in a distributed and complex environment

•possibility of reproduction of all kinds of situations where they must act

➢ It presents the following drawbacks:

the accuracy of the simulated results versus the real ones

VANET and ITSVANET OptimizationVANET EvaluationMotivation

IWCMC 2011

Istanbul, Turkey 5-8 July 2011

1. Introduction and Motivation. Motivation

CARLAB is a general initiative for the evaluation of VANETs that includes simulations (indoor CARLAB) and real world experiments (outdoor CARLAB)

➢Using outdoor CARLAB experiments we wanted to confirm the performance improvements when optimized protocols are used, validating the results previously obtained by means of indoor CARLAB

DIRICOM: Design of Wireless Communication Networks [2008-2012] http://diricom.lcc.uma.es

CARLINK: Wireless Traffic Service Platform for Linking Cars [2006-2008] http://carlink.lcc.uma.es

5/15

•VANET Scenario Definition •VDTP Protocol •Experimental Settings

IWCMC 2011

Istanbul, Turkey 5-8 July 2011

2. Outdoor CARLAB Overview. VANET Scenario Definition

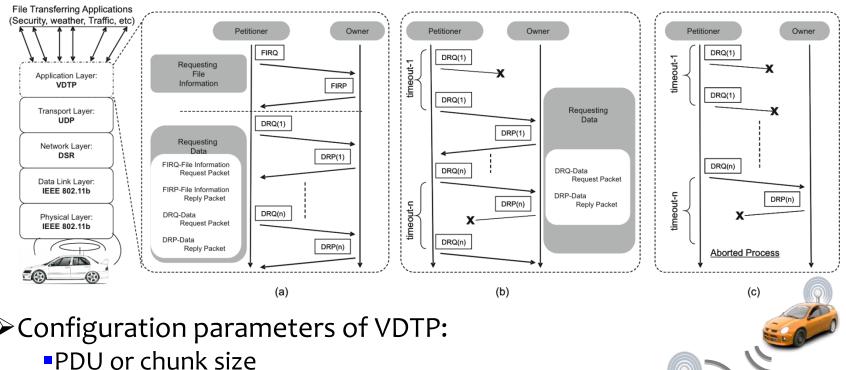
➤Two cars moving through some selected roads in a urban area from the downtown of Málaga (Spain)

The average distance between nodes was 77 m

➢Vehicles carried a notebook equipped with a PROXIM ORINOCO PCMCIA (IEEE 802.11bg) WiFi transceiver

Parameter	Value
Propagation model	Two Ray Ground
Carrier frequency	2.4 Ghz
Channel bandwidth	5.5 Mbps
MAC Protocol	IEEE 802.11b
Routing Protocol	DSR
Transport Protocol	UDP
Application Protocol	VDTP

 VANET Scenario Definition VDTP Protocol Experimental Settings


IWCMC 2011

Istanbul, Turkey 5-8 July 2011

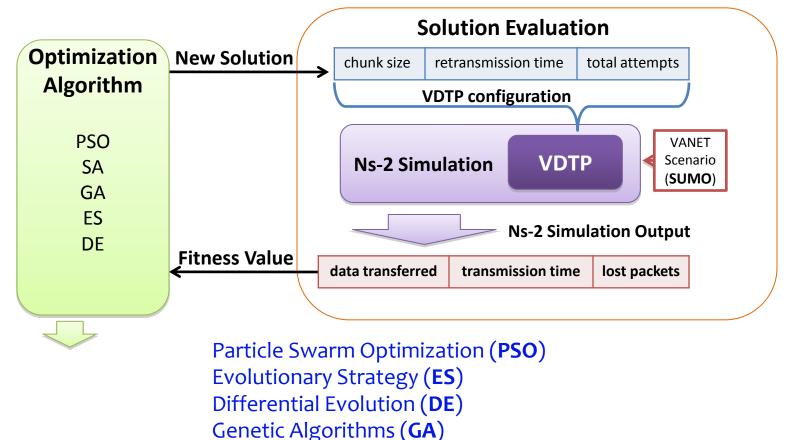
7/15

2. Outdoor CARLAB Overview. VDTP Protocol

>Vehicular Data Transfer Protocol (VDTP) is an application layer protocol that allows end-to-end file transfer in VANETs

Configuration parameters of VDTP:

- PDU or chunk size
- Retransmission time (timeout)
- Max attempts per packet


VANET Scenario Definition
VDTP Protocol
Experimental Settings

IWCMC 2011

Istanbul, Turkey 5-8 July 2011

2. Outdoor CARLAB Overview. Experimental Settings

➢Optimal VDTP configurations:

Simulated Annealing (SA)

VANET Scenario Definition
VDTP Protocol
Experimental Settings

IWCMC 2011

Istanbul, Turkey 5-8 July 2011

2. Outdoor CARLAB Overview. Experimental Settings

➢Six different VDTP configurations:

Configuration	chunk size	timeout	max. attempts
PSO	41,358	10.00	3
DE	28,278	6.00	9
ES	23,433	10.00	8
GA	31,196	3.83	9
SA	19,756	6.43	3
EXPERTS	25,600	8.00	8

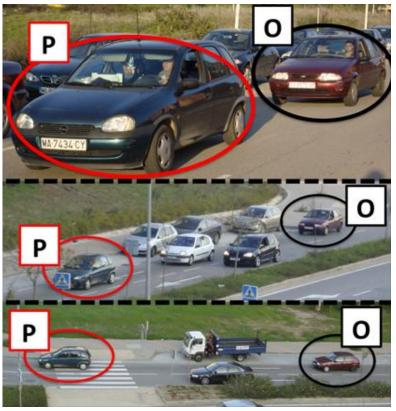
Two different car speeds: **Urban Low Speed** (20 to 30 Km/h) and **Urban High Speed** (40 to 50 Km/h)

Five type of data files: 100 KB, 500 KB, 1 MB, 5 MB, and 10 MB

▶15 file transfers of each file type (15 x 5 = 75 file transfers)

►VANET evaluation:trail	t packets nsmission time ount of data exchanged data rate (goodput)	9/15
Jamal Toutouh and Enrique Alba	Performance Analysis of Optimized VANET Protocols in Real Worl	d Tests

•VANET Global Performance
 •VDTP Configuration Comparison
 IVCCMC 2011


Istanbul, Turkey 5-8 July 2011

3. Experimental Results. VANET Global Performance

➢All files were transferred completely and correctly

In spite of transmission problems, the nodes were able to reconnect before the file transfers were refused

➤Majority of transfers bandwidth were higher than 600 KB/s

VANET Global Performance

•VDTP Configuration Comparison

Istanbul, Turkey 5-8 July 2011

3. Experimental Results. VANET Global Performance

Influence of the vehicles' speed

Communications performed better when the speeds were lower Urban Low Speed (ULS) lost 0.133 packets per file with a bandwith of 610 KB/s Urban High Speed (UHS) lost 0.153 packets with a bandwith of 598 KB/s

\succ Influence of the file size

I MB files transferred with higher bandwith

683 KB/s (ULS) and 676 KB/s (UHS)

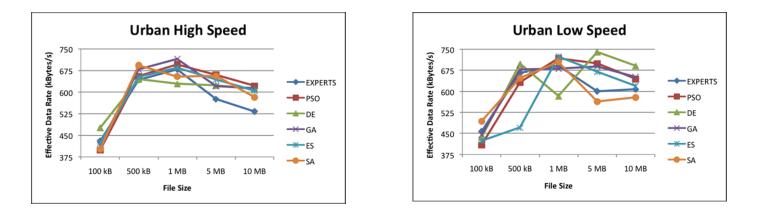
VDTP was optimized to exchange 1 MB files

IOO KB files transfers performed the worst

444 KB/s (ULS) and **424 KB/s** (UHS)

Impact of handshaking process of VDTP is greater for smaller files

VANET Global Performance


•VANET Global Performance
 •VDTP Configuration Comparison
 IVCCMC 2011

Istanbul, Turkey 5-8 July 2011

12/15

3. Experimental Results. VDTP Configuration Comparison

 \succ In order to compare the performance of the six studied protocols we use the **goodput metric**

>It is not easy to provide any global conclusion about wich configuration performed the best

>Therefore, we applied statistical tests to the distribution of the achieved goodputs

Jamal Toutouh and Enrique Alba

VANET Global Performance

-VDTP Configuration Comparison WCMC 2011

Istanbul, Turkey 5-8 July 2011

3. Experimental Results. VDTP Configuration Comparison

Friendman Ranking test (p-value<0.05) of goodput:</p>

Non-parametric test for distribution that violates heteroscedasticity ANOVA

Urban Low Speed		Urban High Speed		Urban	
Configuration	Rank	Configuration	Rank	Configuration	Rank
PSO	4.26	PSO	4.26	PSO	4.26
GA	3.95	SA	3.62	ES	3.60
DE	3.73	ES	3.56	GA	3.54
ES	3.64	DE	3.28	DE	3.51
SA	2.74	EXPERTS	3.16	SA	3.18
EXPERTS	2.68	GA	3.12	EXPERTS	2.92

PSO is the best ranked achieving the best average goodput, 613 KB/s **EXPERTS** is the worst ranked obtaining the worst average goodput, 579 KB/s Globally, the optimized VDTP outperformed the experts proposed version, confirming the resutls obtained by means of simulations

•VANET Global Performance

-VDTP Configuration Comparison WCMC 2011

Istanbul, Turkey 5-8 July 2011

3. Experimental Results. VDTP Configuration Comparison

In terms of data loss:

Urban Low Speed		Urban High Speed		Sum of Lost Data	
Configuration	Data loss	Configuration	Data loss	Configuration	Data loss
ES	14,060	ES	16,403	ES	30,463
SA	15,804	DE	16,967	DE	33,933
PSO	16,543	SA	19,756	SA	35,560
DE	16,967	EXPERTS	20,480	EXPERTS	38,400
EXPERTS	17,920	PSO	24,815	PSO	41,358
GA	28,076	GA	28,075	GA	56,152

ES lost the **lowest** amount of data (30,462 bytes)

Longest retransmission time (10 s) and second smallest chunk (23,433 bytes)

➤GA suffered with the highest data loss (56,152)

Shortest retransmission time (3.83 s) and second largest chunk (31,196 bytes)

PSO is the **fifth**, however it presents the best goodput results

EXPERTS configuration is the **forth**

Jamal Toutouh and Enrique Alba

Performance Analysis of Optimized VANET Protocols in Real World Tests

14/15

IWCMC 2011

Istanbul, Turkey 5-8 July 2011

4. Conclusions and Future Work

The results obtained performing outdoor CARLAB experiments (real VANETs) confirm the ones obtained by the indoor CARLAB experiments (VANET simulations)

During our tests, 1 MB files were exchanged achieving the highest data rates

➢Globally, automatically optimized configurations outperformed the human experts proposed one

Friedman Rank statistical test ranked **PSO** as the **best one** (goodput)

➤Metaheuristic techniques seem to be adequate to address the problem of configuring VANET protocols

Extending our outdoor CARLAB testbed by increasing the number of vehicles (multi-hop) and planning new experiments in highway roads 15/15

IWCMC 2011

Istanbul, Turkey 5-8 July 2011

Thank you for your attention...

DIRICOM: Design of Wireless Communication Networks [2008-2012] http://diricom.lcc.uma.es CARLINK: Wireless Traffic Service Platform for Linking Cars [2006-2008] http://carlink.lcc.uma.es

Jamal Toutouh and Enrique Alba

IWCMC 2011

Istanbul, Turkey 5-8 July 2011

Thank you for your atention

jamal@lcc.uma.es www.jamal.es

DIRICOM: Design of Wireless Communication Networks [2008-2012]
 http://diricom.lcc.uma.es
CARLINK: Wireless Traffic Service Platform for Linking Cars [2006-2008]
 http://carlink.lcc.uma.es

Jamal Toutouh and Enrique Alba