

GreenGEC 2012 GECCO 2012

Philadelphia, USA July 7-11, 2012

Green OLSR in VANETs with Differential Evolution

Green and Efficient Energy Applicationsof Genetic and Evolutionary Computation
-GreenGEC 2012-

Jamal Toutouh and Enrique Alba

University of Malaga, Spain

GreenGEC 2012 GECCO 2012 Philadelphia USA

Philadelphia, USA July 7-11, 2012

Outline

- Introduction
- Energy-Efficient OLSR
- 3 Experimental Results
- 4 Conclusions and Future Work

July 7-11, 2012

1. Introduction. VANETs and Energy Issues

➤ VANETs are self-configuring wireless ad hoc networks.

Nodes are vehicles, pedestrian equipped with personal devices, sensors, and elements of roadside,

> Deployed to enable up-to-minute road traffic information exchange

- Transport Efficiency
- Safety

➤ VANETs involve devices fed with **limited power sources**. Power-aware network architectures and protocols are highly desirable

- ➤ The routing protocol affects the nodes power consumption:
 - ■The protocol operation → amount of energy used to compute the routing paths
 - •The computed routing paths → the terminals power consumption when forwarding packets

Introduction
Power-Aware AODV
Experimental Analysis
Conclusions and Future Work

VANET and Energy IssuesContribution

GreenGEC 2012
GECCO 2012
Philadelphia, USA

July 7-11,

1. Introduction. Contribution

- ➤ We study the application of **Differential Evolution (DE)** to compute **power**-aware routing protocol configurations
 - ■The optimization process is guided by evaluating tentative solutions (protocol parameterizations) by means of ns-2 VANET simulations
- ➤ We suggest **new energy-efficient protocol parameterization** that reduces the power consumption with no significant loss in QoS
- ➤ We validate the results by an exhaustive analysis of the performance in realistic VANET simulations taken the metropolitan area of Málaga (Spain) as main scenario

Introduction
Energy-Efficient OLSR
Experimental Analysis
Conclusions and Future Work

- Problem Definition
- Methodology
- Optimization Method Details
- Fitness Evaluation

Philadelphia, USA

GreenGEC

2. Energy-Efficient OLSR. Problem Definition

- ➤OLSR is a **proactive** routing protocol for mobile ad hoc networks
- ➤OLSR generates significant routing workload that produces **network** congestion and excessive energy consumption problems
- Finding the best OLSR configurations to enable **green communications** in VANETs is the main subject of this work
- ➤ An excessive energy consumption reduction can lead to protocol malfunction

 •QoS restriction → Maximum allowed PDR degradation 15% (over the standard)

parameter	RFC 3626 value	type	range
HELLO_INTERVAL	2.0 s	real	[2.0, 15.0]
REFRESH_INTERVAL	2.0 s	real	[2.0, 15.0]
TC_INTERVAL	5.0 s	real	[4.0, 35.0]
WILLINGNESS	3	integer	[0, 7]
NEIGHB_HOLD_TIME	6.0 s	real	[5.5, 45.0]
TOP_HOLD_TIME	15.0 s	real	[10.5, 90.0]
MID_HOLD_TIME	15.0 s	real	[10.5, 90.0]
DUP_HOLD_TIME	30.0 s	real	[10.5, 90.0]

4/14

Fitness Evaluation

Methodology

Optimization Method Details

July 7-11, 2012

Experimental Analysis Conclusions and Future Work

2. Energy-Efficient OLSR. Methodology

Automatic optimization tool coupling **Differential Evolution (DE)** and realistic VANET simulation (ns-2)

> Methodology

Introduction **Power-Aware AODV**

Experimental Analysis Conclusions and Future Work Problem Definition

- Methodology
- Optimization Method Details
- Fitness Evaluation

July 7-11, 2012

2. Energy-Efficient OLSR. Optimization Method Details

➤ Problem Encoding:

parameter	type	range
HELLO_INTERVAL	real	[2.0, 15.0]
REFRESH_INTERVAL	real	[2.0, 15.0]
TC_INTERVAL	real	[4.0, 35.0]
WILLINGNESS	integer	[0, 7]
NEIGHB_HOLD_TIME	real	[5.5, 45.0]
TOP_HOLD_TIME	real	[10.5, 90.0]
MID_HOLD_TIME	real	[10.5, 90.0]
DUP_HOLD_TIME	real	[10.5, 90.0]

GreenGEC 2

Fitness Function:

$$F(s) = \Delta + \left(\omega_1 \times \frac{E(s)}{E_{RFC}} + \omega_2 \times \frac{PDR(s)}{PDR_{MAX}}\right)$$

$$\Delta$$
=0.1, ω_1 =0.9, and ω_2 =-0.1

Penalization model (PDR degradation > 15%)

$$F(s) = \Delta + \left(\omega_1 \times \frac{E(s)}{E_{RFC}} + \omega_2 \times \frac{PDR(s)}{PDR_{MAX}}\right) \qquad F_P(s) = F(s) + \left((PDR_W - PDR(s)) \times \frac{E(s)}{E_{RFC}}\right)$$

Introduction Power-Aware AODV

Experimental Analusis
Conclusions and Future Work

Problem Definition

Methodology

Optimization Method Details

• Fitness Evaluation

Philadelphia, USA July 7-11, 2012

2. Energy-Efficient OLSR. Optimization Method Details

>Initialization:

• **Spreads uniformly** the population over the search space. It splits the search space into *pop_size* (number of individuals) **diagonal subspaces** and locates each individual in one subspace.

➤ Offspring generation:

Differential-crossover and Differential-mutation

July 7-11, 2012

3. Experimental Analysis. Experiments Definition

➤ VANET scenarios definition (54 scenarios):

Urban area	Area size	Num. nodes
U1	120,000 m ²	10
		15
		20
U2	240,000 m ²	20
		30
		40
U3	360,000 m ²	30
		45
		60

Scenario for the optimization process: **U2, 20 nodes, 66 kbps**

VANET workload:

low-rates: 33, 66, and 100 kbps

high-rates: 333, 666, and 1000 kbps

- Experiments Definition
- DE Optimization Results
- Validation Results

3. Experimental Analysis. Experiments Definition

- ➤ DE was developed by using C++ MALLBA Library:
 - Population size = 8 individuals
 - Number of generations = 125
 - Crossover probability (Cr) = 0.9
 - Mutation factor (μ) = 0.125

After performing DE configuration analysis experiments using **U1**, **10**, **33** kbps scenario to find the best DE parameterization

≥30 independent runs

- Experiments Definition
- DE Optimization Results
- Validation Results

GreenGEC 2012 GECCO 2012 Philadelphia, USA July 7-11, 2012

3. Experimental Analysis. DE Optimization Results

≻Optimization performance:

Solution	Fitness value	Energy (J)	PDR (%)
Best (Minimum)	0.6831	6684.71	77.76
Median	0.7157	7026.93	78.92
Maximum	0.7382	7256.19	79.08
OLSR RFC	n/a	9104.19	87.12

>25% energy saving

<10% of PDR degradation

- Mean execution time = 4.6 hours (1.6525E+4 secs)
- Best solution found mean time = 2.8 hours (1.0037E+4 secs)

10/14

- Experiments Definition
- DE Optimization Results
- Validation Results

3. Experimental Analysis. Validation Results

- ➤ Comparison: **DE/EE-OLSR**, standard configuration (OLSR-RFC), and QoS optimized OLSR (DE-OLSR)
 - Over 54 VANET scenarios
- ➤ Average **energy consumed** by each node and the **PDR**
- Friedman statistical test is applied to rank the configurations regarding the energy consumption

Introduction **Power-Aware AODV Experimental Analusis Conclusions and Future Work**

- Experiments Definition
- DE Optimization Results Validation Results
- GreenGEC

July 7-11, 2012

3. Experimental Analysis. Validation Results

- Energy consumption
- **DE/EE-OLSR** and DE-OLSR improve RFC
- •The energy savings increase with the size of the VANET
- ■DE/EE-OLSR saves between 21% and 41% of power consumption comparing to the standard
- •Friedman statistical test ranked DE/EE-OLSR as the configuration with the lowest power consumption (p-value << 0.05)

Energy consumption per node (J)

- Experiments Definition
- DE Optimization ResultsValidation Results

3. Experimental Analysis. Validation Results

> PDR results

	PDR		
Config.	U1	U2	U3
DE/EE-OLSR	66.11%	62.04%	56.62%
DE-OLSR	69.57%	66.30%	67.70%
OLSR-RFC	71.71%	71.78%	64.00%

- •The three analyzed configurations delivered more than 55% of the data packets
- •The PDR metric decreases with the size of the network
- ■The PDR degradation of DE/EE-OLSR is lower than 9% (<15%) regarding OLSR RFC. The energy savings do not cause malfunction

July 7-11, 2012

4. Conclusions and Future Work

- Automatic methodology for computing power-aware OLSR configurations for VANETs, by coupling DE and ns-2 VANET simulator
- ➤ Main results:
 - this methodology obtained automatically energy-efficient configurations requiring a mean time of 4.6 hours
 - the best power-aware configuration (DE/EE-OLSR) saved up to 31% of energy, with significant improvements up to 41% in large networks
 - the degradation of PDR is bellow 9%
- ➤ Promising methodology for automatic and efficient customization of VANET routing protocols
- >Future work:
 - analyze other metaheuristic techniques to explore the search space
 - analyze new fitness functions considering new power-aware and QoS metrics
 - multi-objective optimization techniques to solve this problem since the energy vary in inverse proportion with QoS

GreenGEC 2012 GECCO 2012

Philadelphia, USA July 7-11, 2012

Thank you for your attention...

jamal@lcc.uma.es www.jamal.es

