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Abstract 

 

Evolutionary testing is a very popular domain in the field of search based software 

e n g i n e e r i n g  that consists i n  automatically generating test data for a given 

piece of code using evolutionary algorithms. One of the most important measures 

used to evaluate the quality of  the generated test suites is code coverage. In this 

paper we first analyze if there exists a correlation between some static measures 

computed on the test program and the code coverage when an evolutionary test data 

generator is used. In particular, we use and compare three techniques for the search 

engine of the test data generator: an Evolutionary Strategy, a Genetic Algorithm, 

and a Random Search. We have also developed a program generator that is able 

to create Java programs with the desired values for the given static measures. Our 

experimental study includes a benchmark of 1800 programs automatically 

generated. In addition to the correlations study we also analyze the subset of 

programs for which one algorithm is better than another one. This second analysis 

could be the basis for the development of a software tool that automatically decides 

the suitable test data generation search engine according to the static measures 

computed on the test object. 
 
Keywords: Evolutionary testing, branch coverage, evolutionary algorithms 

 

1. Introduction 

 

Automatic software testing is one of the most studied topics in the field of Search-

Based Software Engineering (SBSE) [13, 14]. From the first works [20] to nowadays 

many approaches have been proposed for solving the automatic test data generation 

problem. This great effort in building computer aided software testing tools is 

motivated by the cost and importance of the testing phase in the software development 

cycle. It is estimated that half the time spent on software project development, and 

more than half its cost, is devoted to testing the product [7]. This explains why Software 

Industry and Academia are interested in automatic tools for testing. 

Evolutionary algorithms (EAs) have been the most popular search algorithms for 

generating test data [17]. In fact, the term evolutionary testing is used to refer to this 

approach. In the paradigm of structural testing a lot of research has been performed using 

EAs with a focus on different elements of the structure of a program studied in detail. 

Some examples are the presence of flags in conditions [5], the coverage of loops [10], the 
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existence of internal states [31], and the presence of possible exceptions [27]. In addition, 

several evolutionary algorithms have been used as search engine like scatter search [8], 

genetic algorithms [1, 3], simulated annealing [30] or tabu search [11]. 

The objective of an automatic test data generator used for structural testing is to 

find a test data suite that is able to cover all the software elements. These elements can be 

instructions, branches, atomic conditions, and so on. The performance of an automatic 

test data generator is usually measured as the percentage of elements that the 

generated test suite is able to cover in the test program. This measure is called coverage. 

The coverage obtained depends not only on the test data generator, but also on the 

program being tested. Then, we can raise the following research questions: 

 

– RQ1: Is there any static measure of the test program having a clear correlation 

with the coverage percentage of a given algorithm? 

– RQ2: How many of these measures exist and how they correlate with coverage? 

– RQ3: Is it possible to use the static measures to determine a priori which test data 

generation algorithm is the best for a given program? 

 

As we said before, coverage depends also on the test data generator. Then, in order to 

completely answer the questions we should use all the possible automatic test data 

generators or, at least, a large number of them. We can also focus on some test data 

generators and answer to the previous questions on them, taking into account that in this 

case the results will be valid for the test data generators considered. This is what we do in 

this paper. In particular, we study the influence on the coverage of a set of static software 

measures when we use three test data generators: two of them based on evolutionary 

testing and an additional one based on random search. In a first step, we study the 

correlations between a dynamic measure (coverage) and static ones. This way, we answer 

RQ1 and RQ2. In a second step, we analyze the results in order to study which automatic 

test data generation method is more suitable for a given program. 

The rest of the paper is organized as follows. In the next section we present the 

measures that we use in our study. Then, we detail the general structure of the test 

data generator used in Section 3. After that, Section 4 describes the experiments 

performed and discusses the results obtained. Finally, in Section 5 some conclusions 

and future work are outlined. 

 

2. Measures 

Quantitative models are frequently used in different engineering disciplines for 

predicting situations, due dates, required cost, and so on. These quantitative models 

are based on some kinds of measure performed on project data or items. Software 

Engineering is not an exception. A lot of measures are defined in Software Engineering 

in order to predict software quality [25], task effort [9], etc. We are interested here in 

measures performed on source code pieces. We distinguish two kinds of measures: 

dynamic, which requires the execution of the program, and static, which does not 

require the execution. 

The measures used in this study are eight: number of sentences, number of atomic 

conditions per decision, total number of decisions, number of equalities, number of 

inequalities, nesting degree, McCabe’s cyclomatic complexity, and branch coverage. The 

three first measures are easy to understand. The number of (in)equalities is the number of 
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times that the operator (! =) == is found in atomic conditions of a program. The nesting 

degree is the maximum number of conditional statements that are nested one inside 

another. In the following paragraphs we describe in more detail the coverage and the 

McCabe’s cyclomatic complexity. 

In order to define a coverage measure, we first need to determine which kind of 

element is going to be “covered”. Different coverage measures can be defined depending 

on the kind of element to cover. Statement coverage, for example, is defined as the 

percentage of statements that are executed. In this work we use branch coverage [28], 

which is the percentage of branches exercised in a program. This coverage measure is 

used in most of the related papers in the literature [11, 26]. 

Cyclomatic complexity is a complexity measure of code related to the number of ways 

there exists to traverse a piece of code. This measure determines the minimum number 

of test cases needed to test all the paths using linearly independent circuits [16]. 

Cyclomatic complexity is computed using the control flow graph of the program: the 

nodes of the graph correspond to indivisible groups of sentences of a program, and a 

directed edge connects two nodes if the second sentence might be executed 

immediately after the first sentence. Cyclomatic complexity may also be applied to 

individual functions, modules, methods or classes within a program, and is formally 

defined as follows: 

 

v(G) = E − N + 2P ;                                                       (1)  

 

where E is the number of edges of the graph, N is the number of nodes of the graph, 

and P is the number of connected components. 

In Figure 1, we show an example of control flow graph (G). It is assumed that 

each node can be reached by the entry node and each node can reach the exit node. The 

maximum number of linearly independent circuits in G is 9-6+2=5, so this is the 

cyclomatic complexity. 

 
 

Fig. 1: The original graph of McCabe’s article 

 

The correlation between the cyclomatic complexity and the number of software faults 

has been studied in some research articles [6, 15]. Most such studies find a strong 

positive correlation between the cyclomatic complexity and the defects: the higher the 

complexity the larger the number of faults. For example, a 2008 study by metric-

monitoring software supplier Energy [12] analyzed classes of open-source Java 

applications and divided them into two sets based on how commonly faults were 

found in them. They found strong correlation between cyclomatic complexity and their 
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faultiness, with classes with a combined complexity of 11 having a probability of 

being fault-prone of just 0.28, rising to 0.98 for classes with a complexity of 74. 

In addition to this correlation between complexity and errors, a connection has been 

found between complexity and difficulty to understand software. Nowadays, the 

subjective reliability of software is expressed in statements such as “I understand this 

program well enough to know that the tests I have executed are adequate to provide my 

desired level of confidence in the software”. For that reason, we make a hard link between 

complexity and difficulty of discovering errors. 

Since McCabe proposed the cyclomatic complexity, it has received several criticisms. 

Weyuker [29] concluded that one of the obvious intuitive weaknesses of the cyclomatic 

complexity is that it makes no provision for distinguishing between programs which 

perform very little computation and those which perform massive amounts of computation, 

provided that they have the same decision structure. Piwowarski [21] noticed that 

cyclomatic complexity is the same for N nested if statements and N sequential if 

statements.  

In connection with our research questions, Weyuker’s critic is not relevant, since 

coverage does not take into account the amount of computation of a block of statements. 

However, Piworarski’s critic is important in our research because the nesting degree of a 

program is inversely correlated with branch coverage (see Section 4.2). 

 

3. Test Data Generator 

Our test data generator breaks down the global objective (to cover all the branches) 

into several partial objectives consisting of dealing with only one branch of the 

program. Then, each partial objective can be treated as a separate optimization 

problem in which the function to be minimized is a distance between the current test 

data and one satisfying the partial objective. In order to solve such minimization 

problem Eolutionary Algorithms Algorithms (EAs) could be used. The main loop of 

the test data generator is shown in Fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: The test data generation process 

 

In a loop, the test data generator selects a partial objective (a branch) and uses the 

optimization algorithm to search for test data exercising that branch. When a test data 

covers a branch, the test data is stored in a set associated to that branch. The structure 

composed of the sets associated to all the branches is called coverage table. After the 

optimization algorithm stops, the main loop starts again and the test data generator selects 
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a different branch. This scheme is repeated until total branch coverage is obtained or a 

maximum number of consecutive failures of the optimization algorithm are reached (10 

consecutive failures in this work). When this happens the test data generator exits the main 

loop and returns the sets of test data associated to all the branches. In the rest of this 

section we describe two important issues related to the test data generator: the objective 

function to minimize and the optimization algorithms used. 

3.1  Objective Function 

Following on from the discussion in the previous section, we have to solve several 

minimization problems: one for each branch. Now we need to define an objective function 

(for each branch) to be minimized. This function will be used for evaluating each test data, 

and its definition depends on the desired branch and whether the program flow reaches the 

branching decision associated to the target branch or not. If the decision is reached we can 

define the objective function on the basis of the logical expression of the branching 

decision and the values of the program variables when the decision is reached. The 

resulting expression is called branch distance and can be defined recursively on the 

structure of the logical expression. That is, for an expression composed of other 

expressions joined by logical operators the branch distance is computed as an aggregation 

of the branch distance applied to the component logical expressions. For the Java logical 

operators & and | we define the branch distance as
1
: 

 

 
 

 

where a and b are logical expressions. 

In order to completely specify the branch distance we need to define its value in the base 

case of the recursion, that is, for atomic conditions. The particular expression used for the 

branch distance in this case depends on the operator of the atomic condition. The operands 

of the condition appear in the expression. A lot of research has been devoted in the past to 

the study of appropriate branch distances in software testing. An accurate branch distance 

taking into account the value of each atomic condition and the value of its operands can 

better guide the search. In procedural software testing these accurate functions are well-

known and popular in the literature. They are based on distance measures defined for 

relational operators like <, >, and so on [19]. We use here these distance measures 

described in the literature. 

When a test data does not reach the branching decision of the target branch we cannot 

use the branch distance as objective function. In this case, we identify the branching 

decision c whose value must first change in order to cover the target branch (critical 

branching decision) and we define the objective function as the branch distance of this 

branching decision plus the approximation level. The approximation level, denoted here 

with ap(c, b), is defined as the number of branching nodes lying between the critical one 

(c) and the target branch (b) [28]. 

In this paper we also add a real valued penalty in the objective function to those test 

data that do not reach the branching decision of the target branch. With this penalty, 

denoted by p, the objective value of any test data that does not reach the target 

branching decision is higher than the one of any test data that reaches the target 

branching decision. The exact value of the penalty depends on the target branching 

decision and it is always an upper bound of the target branch distance. Finally, the 

expression for the objective function is as follows: 
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1  These operators are the Java and, or logical operators without shortcut evaluation. For the sake
of clarity we omit here the definition of the branch distance for other operators. 

 

 

 

 

where c is the critical branching decision, and bdb , bdc are the branch distances of 

branching decisions b and c. 

 

Nested branches pose a great challenge for the search. For example, if the decision 

associated to a branch is nested within three conditional statements, all the decisions of 

these statements must be true in order for the program flow to proceed onto the next 

one. Therefore, for the purposes of computing the objective function, it is not possible 

to compute the branch distance for the second and third nested decisions until the first 

one is true. This gradual release of information might cause e f f i c iency  problems for 

the search (what McMinn calls the nesting problem [18]), which forces us to 

concentrate on satisfying each predicate sequentially. 

In order to alleviate the nesting problem, the test data generator selects as objective 

in each loop one branch whose associated decision has been previously reached by 

other test data stored in the coverage table. Some of these test data are inserted in the 

initial population of the EA used for solving the optimization problem. The percentage 

of individuals introduced in this way in the population is called the replacement factor 

and is denoted by Rf . In the experimental section of this work we use Rf = 25%. At 

the beginning of the generation process some random test data are generated in order to 

reach some branching decisions. 

 

3.2  Optimization Algorithm 

EAs [4] are metaheuristic search techniques loosely based on the principles of 

natural evolution, namely, adaptation, and survival of the fittest. These techniques have 

been shown to be very effective in solving hard optimization tasks. They are based on 

a set of tentative solutions (individuals) called population. The problem knowledge is 

usually enclosed in an objective function, the so-called fitness function, which assigns a 

quality value to the individuals. In Fig. 3 we show the main loop of an EA. 

 

 
Fig. 3: Pseudocode of an EA 

 

Initially, the algorithm creates, randomly or by using a seeding algorithm, a 

population of µ individuals, each one representing an input of the test program. At each 

step, the algorithm applies stochastic operators such as selection, recombination, and 

mutation (we call them variation operators in Fig. 3) in order to compute a set of λ 
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descendant individuals P’(t). The objective of the selection operator is to select some 

individuals from the population to which the other operators will be applied. The 

recombination operator generates a new individual f rom several ones by combining 

their solution components. This operator is able to put together good solution 

components that are scattered in the population. On the other hand, the mutation 

operator modifies one single individual and is the source of new different solution 

components in the population. The individuals created are evaluated according to the 

fitness function. The last step of the loop is a replacement operation in which the 

individuals for the new population P (t + 1) are selected from the offspring P’(t) and 

the old one P (t). This process is repeated until a stop criterion is fulfilled, such as 

reaching a pre-programmed number of iterations of the algorithm or finding an 

individual with a preset target quality. In this work we use two EAs as the 

optimization algorithm of the test data generator: an evolutionary strategy (ES) and 

a genetic algorithm (GA). In the following we focus on the details of these two EAs. 

In an ES [23] each individual represents a test data input, being composed of a 

vector of real numbers representing the problem variables (x), a vector of standard 

deviations (σ) and a vector of angles (ω). These two last vectors are used as parameters 

for the main operator of this technique: the Gaussian mutation. They are evolved 

together with the problem variables themselves, thus allowing the algorithm to self adapt 

the search to the landscape. The mutation operator is governed by the three following 

equations: 

 

 

 

 

where C(σ’, ω’) is the covariance matrix associated to σ’ and ω’, N (0, 1) is the standard 

univariate normal distribution, and N(0,C) is the multivariate normal distribution 

with mean 0 and covariance matrix C. The subindex i in the standard normal 

distribution indicates that a new random number is generated anew for each 

component of the vector. The notation N (0, 1) is used for indicating that the same 

random number is used for all the components. The parameters τ , η, and ϕ are set to 

(2n)
-1/2 , (4n)

-1/4 , and 5π/180, respectively, as suggested in [24]. For the recombination 

operator of an ES there are many alternatives: each of the three real vectors of an 

individual can be recombined in a different way. In our particular implementation, we 

use discrete uniform recombination for the solution vector x, where each component is 

selected form the best parent with a predefined probability, called bias. For the vector 

of standard deviations and angles we use arithmetic recombination. The exact 

expressions for the components of the vectors are: 

 

 

 

 

 

where the subindices are used to denote the two parent solutions and U (0, 1) denotes a 

random sample of a uniform distribution in the interval [0, 1). With respect to the 

replacement operator, there is a special notation to indicate whether the old 

population is taken into account or not to form the new population. When only the 

new individuals are used, we have a (µ, λ)-ES; otherwise, we have a (µ + λ)-ES. 
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Regarding the representation, since all the test programs have integer parameters, each 

component of the vector solution x is rounded to the nearest integer and used as actual 

parameter of the program. There is no limit in the input domain, thus allowing the ES 

to explore the whole solution space. 

In our GA the individuals are vectors of integer values that represent a test data 

input. As the recombination operator we use the uniform crossover (UX), in which 

each component of the new solution is randomly selected from the two parents. The 

formal definition is the same as Equation (8) with bias = 0.5. The mutation operator 

adds a random value to the components of the vector. That is, 

 

xi = xi
1  + U (−500, 500) 

where the probability distribution of these random values is a uniform distribution in 

the range [−500, 500]. However, not all the components of the individual are perturbed, 

only half of them are.  

To finish this section, we show in Table 1 a summary of the parameters used by the 

two EAs in the experimental section. 

 

Table 1. Parameters of the two EAs used in the experimental 

section 

 
 

4. Experimental Section 

In this section we present the experiments performed to answer the research 

questions and the results obtained. In the next section we explain how the benchmark 

of test programs was generated. In the remaining sections we show the empirical 

results and the conclusions obtained, answering the research questions. In Subsection 

4.2 we answer RQ1 and RQ2 by studying the correlations between the static measures 

and coverage. Then, RQ3 is accomplished in Subsections 4.3 and 4.4, where we first 

compare the different test data generators and then we characterize the programs for 

which one algorithm is better than another one. In Subsection 4.2 we answer RQ1 and 

RQ2 by studying the correlations between the static measures and coverage. Then, RQ3 is 

accomplished in Subsections 4.3 and 4.4, where we first compare the different test data 

generators and then we characterize the programs for which one algorithm is better 

than another one. 
 

4.1  Benchmark of Test Programs 

In order to accomplish our empirical studies we first need a large number of test 

programs. For the study to be well-founded, we require a big number of programs 

having the same value for the static measures, as well as programs having different 

values for the measures. It is not easy to find such a variety of programs in the related 



 

 

 

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications    

Vol. Vol. Vol. Vol. 4444, No., No., No., No.    4444, , , , OctoberOctoberOctoberOctober    2020202010101010    

    

 

65 

 

literature. Thus, we decided to automatically generate the programs. This way, it is 

possible to randomly generate programs with the desired values for the static measures 

and, more important, we can generate different programs with the same values for the 

static measures. 

The automatic program generation raises a non-trivial question: are the generated 

programs “realistic”? That is, could them be found in real-world? Using automatic 

program generation it is not likely to find programs that are similar to the ones who a 

programmer would make. This is especially true if the program generation is not driven 

by a specification. However, this is not a drawback in our study, since our analysis is 

based only on some static measures of the programs and branch coverage. In this 

situation, “realistic programs” means programs that have similar values for the 

considered static measures as the ones found in real-world; and we can easily fulfil this 

requirement. 

 

Our program generator takes into account the desired values for the number of 

atomic conditions, the nesting degree, the number of sentences and the number of 

variables. With these parameters and other (less important) ones, the program 

generator creates a program with a defined control flow graph containing several 

decisions. The main features of generated programs are: 

 

– They deal with integer input parameters. 

– Their conditions are joined by whichever logical operator. 

– They are randomly generated. 

 

Due to the randomness of the generation, the static measures could take values that 

are different from the ones specified in the configuration file of the program generator. 

For this reason, in a later phase, we used the free tool CyVis to measure the actual 

values for the static measures. CyVis [22] is a free software tool for metrics collection, 

analysis, and visualization of Java based programs. 

The methodology applied for the program generation is the following. First, we 

analyzed a set of Java source files from the JDK 1.5 (java.util.*, java.io.*, java.sql.*, 

etc.) and we computed the static measures on these files. Next, we used the ranges of 

the most interesting values, e.g., the number of sentences (10-294), McCabe’s 

complexity (1-80) or nesting degree (1-7), obtained in this previous analysis as a guide 

to generate Java source files having values in the same range for the static measures. 

This way, we generate programs that are realistic with respect to the static measures, 

making the following study meaningful. Finally, we generated a total of 1800 Java 

programs using our program generator and we applied our test data generator using an 

ES and a GA as optimization algorithms. We also add to the study the results of a 

random test data generator (RND). This last test data generator proceeds by randomly 

generating test data until total coverage is obtained or a maximum of 100,000 test data 

are generated. We selected this high number of test data as stopping condition because 

it is higher than the number of test data generated by any of the EA based test data 

generators in the empirical study. Since we are working with stochastic algorithms, we 

perform in all the cases 30 independent runs of the algorithms to obtain a very stable 

average of the branch coverage. The experimental study requires a total of 1800 × 30 × 3 

= 162,000 independent runs of test data generators. 
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4.2  Correlation between Coverage and Static Measures 

After the execution of all the independent runs for the three algorithms in the 1800 

programs, in this section we analyze the correlation between the static measures and 

the coverage. We use the Spearman’s rank correlation coefficient ρ to study the degree 

of correlation between two variables. 

First, we study the correlation between the number of sentences and the branch 

coverage. We obtain a correlation of 0.047, 0.069, and 0.073 for these two variables 

using the ES, GA, and RND, respectively. In Fig. 4 we plot the average coverage against 

the number of sentences for ES and all the programs. It can be observed that the 

number of sentences is not a significant parameter and it has no influence on the 

coverage measure. The results obtained with the other two algorithms are similar and 

we omit the corresponding plots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Average branch coverage against the number of sentences 

for ES and all the p rograms 

 

Second, we study the correlation between the number of atomic conditions per decision 

and coverage. After applying Spearman’s rank correlation we obtained low values of 

correlation for all the algorithms (0.026, 0.032, and 0.031). In Table 2 we show the 

coverage obtained for all the programs with different number of atomic conditions per 

decision when ES, GA, and RND are used. From the results we conclude that there is no 

correlation between these two variables. The minimum values for coverage are reached 

with 1 and 7 atomic conditions per decision. This could seem counterintuitive, but a large 

decision with a sequence of logical operators can be easily satisfied due to OR operators. 

Otherwise, a short decision composed of AND operators can be more difficult to satisfy. 

 

Table 2: Relationship between the number of atomic conditions per 

decision and the average coverage. The standard deviation is 

shown in subscript 



 

 

 

International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications    

Vol. Vol. Vol. Vol. 4444, No., No., No., No.    4444, , , , OctoberOctoberOctoberOctober    2020202010101010    

    

 

67 

 

 
 

Now we analyze the influence on the coverage of the total number of decisions of a 

program. In Figure 5(a), we can observe that in programs with a small number of 

decisions ES reaches a higher coverage than in programs with a large number of 

decisions. This could be interpreted as large programs with many decisions are more 

difficult to test. If there are many decisions, then many different paths in the control flow 

graph will exist, this fact is also taken into account in the cyclomatic complexity. The 

correlation coefficients are −0.371 for ES, −0.351 for GA, and −0.348 for RND. With 

the aim of showing up the trend that we found with the correlation test, we plot in 

Fig. 5(b) the average code coverage against the total number of decisions in a different 

way. We complement this plot with the counting function. This function is useful to see 

the regions of the plot where most of the programs are concentrated. In this particular 

case, most of the programs contain between 10 and 25 decisions. Looking at this region, 

we can observe that the coverage decreases when the number of decisions increases. 

 

 

 
(a) Coverage against the total number of decisions  (b) Coverage against the total number of decisions 

with counting function 

Fig. 5: Average branch coverage against the total number of 

decisions for ES and all the programs 

 

Now we study the influence on coverage of the number of equalities and inequalities 

found in the programs. It is well-known that equalities and inequalities are a challenge 

for automatic software testing. This fact is confirmed in the results. The correlation 

coefficients are −0.291, -0.272, and -0.270 for equalities and -0.219, -0.203, and -0.204 

for inequalities using ES, GA, and RND, respectively. In Fig. 6(a), we plot the average 

coverage of all the programs against the number of equalities when the ES algorithm is 

used. In addition, Fig. 6(b) shows the average coverage of all the programs with the 



 

 
International Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its ApplicationsInternational Journal of Software Engineering and Its Applications    

Vol. Vol. Vol. Vol. 4444, No., No., No., No.    4444, , , , OctoberOctoberOctoberOctober    2020202010101010    

    

    

68 

 

same number of equalities together with the counting function. The same information is 

showed in Figs. 7 (a) and (b) for the number of inequalities. If we compare both 

figures, they are quite similar, although the trend is clearer with the equalities because 

they are slightly more correlated with coverage. We conclude that the coverage 

decreases as the number of (in)equalities increases. 

 

 
(a) Coverage against the number of equalities    (b) Coverage against the number of equalities 

with counting function 

 

Fig. 6: Average branch coverage against the number of equalities 

for ES in all the programs 

 

 
(a) Coverage against the number of inequalities    (b) Coverage against the number of inequalities 

with counting function 

 

Fig. 7: Average branch coverage against the number of inequalities 

for ES in all the programs 

 

Let us analyze the nesting degree. In Table 3, we summarize the coverage obtained in 

programs with different nesting degree. If the nesting degree is increased, the branch 

coverage decreases and vice versa. It is clear that there is an inverse correlation between 

these variables. The correlation coefficients are −0.590 for ES, −0.590 for GA, and −0.589 

for RND, what confirms the observations. These correlation values are the highest ones 

obtained in the study of the different static measures, so we can say that the nesting degree 
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is the parameter with the highest influence on the coverage that evolutionary testing 

techniques can achieve. As we said in Section 3.1, nested branches pose a great challenge 

for the search. The high correlation value of the nesting degree supports that statement. 

 

 

 

Table 3: Relationship between the nesting degree and the average 

coverage for all the algorithms. The standard deviation is shown 

in subscript 

 
 

 

Finally, we study the relationship between the McCabe’s cyclomatic complexity and 

coverage. In Fig. 8, we plot the average coverage against the cyclomatic complexity for ES 

in all the programs. Since the figure does not show a clear trend, we plotted together the 

average coverage and the McCabe’s cyclomatic complexity with the counting function in 

Fig. 9. In general we can observe that there is no clear correlation between both 

parameters. The correlation coefficients are −0.193, −0.173, and −0.173 for ES, GA, and 

RND, respectively. These values are low, and confirm the observations: McCabe’s 

cyclomatic complexity and branch coverage are not highly correlated. Furthermore, the 

correlation coefficients are lower than the coefficients we have obtained with other static 

measures like the nesting degree, the total number of decisions, the number of equalities 

and the number of inequalities. This is somewhat surprising, we would expect a positive 

correlation between the complexity of a program and the difficulty to get an adequate test 

suite (represented here as the coverage). However, this is not true: McCabe’s cyclomatic 

complexity cannot be used as a measure of the difficulty to get an adequate test suite. 
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Fig. 8: Average branch coverage against the McCabe’s cyclomatic 

complexity for ES and all the programs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Average branch coverage against the McCabe’s cyclomatic 

complexity for ES and all the programs with the counting 

function 

 

We can go one step forward and try to justify this unexpected behaviour. We have seen 

in the previous paragraphs that the nesting degree is the static measure with the highest 

influence on the coverage. The nesting degree has no influence on the computation of the 

cyclomatic complexity. Thus, the cyclomatic complexity measure is not taking into 

account the information related to the nested code, it is based on some other static 

information that has a lower influence on the coverage. 
 

 

4.3  Comparison of the Algorithms 
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In the previous section we have analyzed the correlations between the static measures 

and the branch coverage. For the study we used the 1800 programs that compose the 

benchmark. In the related literature it is usual to associate the coverage obtained by an 

evolutionary testing technique with its success. That is, it is considered that if technique A 

reaches a low branch coverage, say 30%, then technique A is not very good. However, this 

is not necessarily true. It could happen that the other 70% of the branches in the program 

cannot be exercised by any test data. This situation can also happen in our large 

benchmark. For this reason, we characterize now the coverage and the static measures of 

the programs for which we know that total branch coverage can be obtained or the 

maximum possible coverage is not easy to reach. We define in the following two subsets of 

the entire benchmark. 

The first sub-benchmark is composed of all the programs for which 100% of branch 

coverage was obtained in at least one run of one algorithm. This subset contains 41 

programs and will be denoted with 100-PCC (100 Per Cent Coverage) to distinguish it 

from the entire benchmark that we call 1800-JP (1800 Java Programs). On the one hand, 

this benchmark allows us to study which are the static measures with highest influence on 

the appearance of infeasible branches. On the other hand, it allows us to compare in a fair 

way the three algorithms we are running, since in 100-PCC the coverage percentage is 

really a measure of success. 

The second sub-benchmark is composed of the programs that are not invariant for the 

algorithms. First, we must clear what we mean with “invariant”. In the context of the 

experiments done, we say that a program is invariant for an algorithm if the average 

coverage obtained by the algorithm for this problem is the same as the maximum coverage 

obtained, which implies that for all the independent runs of the algorithm over the program 

the coverage was the same. That is, for each program and algorithm we performed 30 

independent runs, so we have 30 coverage results. We compare the average of these 30 

coverage values and the maximum value. If they coincide we say that the program is 

invariant for the algorithm. This does not necessarily means that it is easy for the algorithm 

to get the maximum possible coverage of the program. It just means that it is highly 

probably that the algorithm cannot reach a higher coverage for this program with the 

parameterization used. Then, the second sub-benchmark, denoted with NI-JP (Non-

Invariant Java Programs), is composed of those programs that pose some challenge for the 

algorithms. There are 1455 programs fulfilling this condition, which is a large number of 

programs. 

Once we have presented the benchmarks, let us show the results. The static measures of 

the programs and the coverage obtained by the three test data generators and the three 

benchmarks are shown in Table 4. We performed a Mann-Whitney statistical test to check 

the significance of the differences between the results of the sub-benchmarks and the entire 

benchmark. We use a confidence level of 95% and we highlight the values for which a 

statistically significant difference with the same parameter in the 1800-JP benchmark 

exists. In Table 5 we show the correlation coefficients between the static measures and the 

branch coverage for the three algorithms. For each measure we highlight the correlation 

with higher absolute value. 

 

Table 4: Comparing the static measures and coverage of the three 

benchmarks 
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Table 5: Correlation coefficients of the static measures against 

the coverage for the three benchmarks and the three algorithms 

 

 

 

 

 

 

 

 

 

 

Let us first focus on the comparison between the results of 100-PCC and 1800-JP. At a 

first glance, we can observe that the coverage values of the algorithms in 100-PCC are 

higher than the same values in 1800-JP: they have increased around 30%. This is not 

surprising since in 100-PCC all the programs with unfeasible branches have been 

removed. If we focus on the coverage for 100-PCC we can also compare the algorithms. 

From the comparison we conclude that, in general, the best algorithm is ES, followed by 

GA, and, finally, RND. This result supports some other ones published in the literature [2]. 

 If we focus on the static measures, we can observe that, in general, they decrease 

when we consider the 100-PCC benchmark. Especially interesting is the decrease of 

the nesting degree (from 3.70 to 2.22), which is the most influent measure when the 

coverage is considered. In this case we observe in Table 5 that the absolute value of the 

correlation coefficient has been reduced (from -0.590 to -0.096 in ES). The reason is 

that the programs that can be totally covered have very low values of nesting degree, 

and a reduction in the number of possible values in one variable reduces the 

correlation coefficient with any other variable. 

The total number of decisions is reduced to its half on average (from 15.85 to 8.95), 

being the unique static measure that maintained the coefficients of correlation close to 

the original ones. Thus, we can assure that there is a strong correlation between 

branch coverage and the total number of decisions. 

Let us focus on the number of equalities. The average number of equalities have been 

reduced about one third, which means that the programs for which total coverage is 

possible have on average just over two equalities. The correlation coefficient varies from 

−0.291 to −0.157 in ES. The last correlation coefficient is the lowest one in absolute value 

of the three algorithms, which indicates that when there are few equalities ES works better. 

We then conclude that the ES is quite sensitive to the number of equalities that appear in 
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the code in both benchmarks. With respect to the number of inequalities, the RND 

algorithm changed the correlation coefficients from −0.203 to −0.301, what indicates that 

the inequalities are a challenge for that algorithm, even in 100-PCC. 

To finish this analysis, we study the McCabe’s cyclomatic complexity. The average 

complexity is reduced to a half in 100-PCC, which means that the control flow graph is 

simpler. This is obvious because all the static measures tightly correlated with the 

McCabe’s complexity, like total number of decisions, have decreased to more than half its 

value. With respect to the correlation coefficients, they increase in absolute value, 

especially in the case of RND (from −0.173 to −0.305). 

Let us now focus on the comparison between the results of NI-JP and 1800-JP. In this 

case the average of the static measures is quite similar in both benchmarks, so there is no 

much to say. However, there are small differences. In particular, all the static measures rise 

and all the coverage percentages decrease in NI-JP. In addition, all the correlation 

coefficients slightly decrease (in absolute value) in general. The observations support the 

previous findings: as the static measures increase the coverage decreases for the three 

algorithms. Once again the performance of the algorithms is ordered in the same way: 

according to the average coverage, ES is the best algorithm followed by GA and RND. 

 

4.4  Characterizing Programs According to the Algorithms Results 

 

In this section we focus on the algorithm used in the test data generator’s core with the 

aim of characterizing the programs for which one algorithm is better than another. In this 

study, we compare the algorithms in a pairwise way. For each pair of algorithms, we select 

the programs where the difference between the average coverage obtained by the 

algorithms is higher than a given value δ. Then, we analyze the features of the selected 

programs to conclude some rules that can help a tester to decide which test data generator 

is more appropriate for their programs. The values of δ used are δ=15% and δ=0%. For 

each comparison we highlight with a gray background the values for which a statistically 

significant difference exists. We remove from this study two static measures that have a 

low correlation with the branch coverage in any scenario: the number of sentences and the 

number of atomic conditions per decision. 

First, we compare ES and RND in Table 6. Let us analyze the features of the programs 

for which δ = 15%. The first observation we can highlight is that the number of programs 

for which ES is better than RND (44) is higher than the number of programs for which the 

opposite happens (19). The differences in the static measures for the two different 

scenarios are not statistically significant. The programs for which the ES is better have a 

slightly higher value for the nesting degree. The remaining static measures are slightly 

reduced for these programs. Now we focus on the case in which δ=0%. Again, the number 

of programs for which ES is better is higher (922 against 489 for the contrary situation). In 

this case we find statistically significant differences in the McCabe’s complexity, the 

number of (in)equalities, and the total number of decisions. Based on these differences we 

conclude that the performance of ES improves as the values of the mentioned measures 

decrease. 
 

 

Table 6: Average and standard deviation of the static measures 

and coverage for the programs involved in the pairwise 

comparison between ES and RND. 
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Now we compare the ES and GA algorithms in Table 7. As in the previous comparison, 

when δ = 15% the differences in the static measures are not statistically significant and the 

number of programs for which ES obtained higher coverage is greater than the number of 

programs in the contrary situation. We can observe again that the programs for which the 

ES is better have a slightly higher value for the nesting degree and the remaining static 

measures are slightly reduced for these programs. Let us turn our attention to the programs 

for which δ= 0%. The number of programs for which ES is better is higher than the 

number of programs for which GA is better (870 against 516). We find statistically 

significant differences in the McCabe’s complexity, the number of (in)equalities, and the 

total number of decisions. As in the ES-RND comparison, we conclude that the 

performance of ES improves as the values of the mentioned measures decrease. 

 

 

 

Table 7: Average and standard deviation of the static measures 

and coverage for the programs involved in the pairwise 

comparison between ES and GA 

 

 

 

 

 

 

 

 

 

 

Finally, we compare the GA and RND algorithms in Table 8. In this case the number of 

programs for which one algorithm is better is very low for δ = 15% (6 for GA and 10 for 

RND). The differences in the average static measures are not statistically significant. If we 

focus on the situation in which δ = 0%, the large number of programs involved allows us 

to draw more reliable conclusions. The number of programs for which GA is better is 

higher than the number of programs with the opposite situation happens (727 against 469). 

The differences in the average static measures are not statistically significant. This fact 

indicates that both algorithms have the same performance in the same region of the static 

measures space. In other words, none of the static measures used clearly indicates which is 

the best algorithm to apply out from GA and RND. 
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Table 8: Average and standard deviation of the static measures 

and coverage for the programs involved in the pairwise 

comparison between GA and RND 

 

 

 
 

 

 

 

 

 

To conclude this section, we analyze the subset of programs for which one algorithm 

is better than the other two (in average coverage). This yields three subsets of programs 

whose features are shown in Table 9. A statistical test shows that the only statistically 

significant differences appear between GA and ES or RND and ES. For this reason, 

we only highlight the values of the GA and RND columns that are significantly 

different from the corresponding value of the ES column. 

 

 

 

 
 

Table 9: Average and standard deviation of the static measures 

and coverage for the programs in which one algorithm is better 

than the other two. 

 

 

 

 

 

 

 

 

 

 

McCabe’s complexity is greater in the programs where GA obtains the better coverage. 

Regarding the nesting degree there is no statistically significant difference, moreover this 

is shown in the slightly difference that exists on average. If we focus on the number of 

equalities and inequalities, GA and RND algorithms seem to be better (with respect to ES) 

when a high number of them appear in the programs. These values are high in comparison 

with the average obtained for all the programs. This fact can yield in the following 

tentative rule: for programs with a low number of (in)equalities a test data generator based 

on ES is the most appropriate one, but when many (in)equalities are present in the code it 

is better to apply GA or RND. Let us focus on the total number of decisions. We can 

observe that the programs for which GA obtains the best coverage contains a higher 

number of decisions compared to the programs for which ES is the best algorithm. As the 
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number of (in)equalities, this feature allows us to determine if ES is the appropriate 

algorithm or if GA or RND would be better instead. 

As summary, from the previous analysis we can extract a heuristic rule to determine 

when ES is the best algorithm to apply and when it is better to use GA or RND. If one 

program has a low number of (in)equalities and a high total number of decisions then ES 

seems to be the best algorithm. On the contrary, if one program has a high number of 

(in)equalities and a low total number of decisions (that is, a high percentage of the 

conditions are equalities or inequalities) then GA or even RND could be better. Although 

the statistically significant differences in Table 9 support the previous rule, the differences 

are not very large on average, what suggests that many exceptions to the rule can be found. 
 

5. Conclusions 

In this work we have used a benchmark composed of 1800 Java programs to correlate 

the features of the programs with the branch coverage obtained by three different test data 

generators. For the features of the programs we selected seven static measures: number of 

sentences, number of atomic conditions per decision, number of total decisions, nesting 

degree, McCabe’s cyclomatic complexity, number of equalities, and number of 

inequalities. In addition to the correlation analysis we characterized the features of the 

programs for which one algorithm is better than another one or the other two. With this 

information we were able to state some rules that can help a test engineer to decide which 

test data generator s/he should use for a particular test program. The results show that the 

nesting degree, the total number of decisions, and the number of (in)equalities are the static 

measures with the highest influence on the branch coverage obtained by automatic test data 

generators like the ones used in the experimental section. We have also observed that ES is 

a good algorithm for the test data generation process when the test object has a low number 

of (in)equalities and a high total number of decisions. On the contrary, if the number of 

(in)equalities is high and the number of decisions low then algorithms like GA or RND 

could be better. However, the differences are slight and more experiments must be done in 

order to find an approximate rule to determine a priori the performance of an algorithm 

over a test object. 

As future work we plan to advance in the analysis of static and dynamic measures of a 

program. We should add more static measures to the study like the number of (in)equalities 

joined by AND operators or the number of decisions affected by the input, in order to be 

able of determining the best algorithm depending of the characteristic of the program under 

test should also add more test data generation algorithms to the study in order to 

characterize their scope of applicability. Finally, we would like to perform the same study 

on real-world software. 
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