
Information and Software Technology 55 (2013) 2125–2139
Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof
Estimating software testing complexity
0950-5849/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.infsof.2013.07.007

⇑ Corresponding author. Tel.: +34 952133303.
E-mail addresses: ferrer@lcc.uma.es (J. Ferrer), chicano@lcc.uma.es (F. Chicano),

eat@lcc.uma.es (E. Alba).
Javier Ferrer ⇑, Francisco Chicano, Enrique Alba
Departamento de Lenguajes y Ciencias de la Computación, Universidad de Málaga, E.T.S. Ingenieria Informatica, Campus de Teatinos, 29071 Málaga, Spain
a r t i c l e i n f o

Article history:
Received 17 December 2012
Received in revised form 19 July 2013
Accepted 20 July 2013
Available online 30 July 2013

Keywords:
Evolutionary testing
Complexity
Branch coverage
Search based software engineering
Evolutionary algorithms
Testability
a b s t r a c t

Context: Complexity measures provide us some information about software artifacts. A measure of the
difficulty of testing a piece of code could be very useful to take control about the test phase.
Objective: The aim in this paper is the definition of a new measure of the difficulty for a computer to gen-
erate test cases, we call it Branch Coverage Expectation (BCE). We also analyze the most common com-
plexity measures and the most important features of a program. With this analysis we are trying to
discover whether there exists a relationship between them and the code coverage of an automatically
generated test suite.
Method: The definition of this measure is based on a Markov model of the program. This model is used
not only to compute the BCE, but also to provide an estimation of the number of test cases needed to
reach a given coverage level in the program. In order to check our proposal, we perform a theoretical val-
idation and we carry out an empirical validation study using 2600 test programs.
Results: The results show that the previously existing measures are not so useful to estimate the difficulty
of testing a program, because they are not highly correlated with the code coverage. Our proposed mea-
sure is much more correlated with the code coverage than the existing complexity measures.
Conclusion: The high correlation of our measure with the code coverage suggests that the BCE measure is
a very promising way of measuring the difficulty to automatically test a program. Our proposed measure
is useful for predicting the behavior of an automatic test case generator.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

Since the birth of Software Industry, there has been a high inter-
est in measuring the effort in terms of time and cost required by a
task. Nowadays, software applications are essential for Industry,
thus software developers need to measure all sort of elements.
Tom DeMarco stated [10]: ‘‘You can not control what you can not
measure. Measurement is the prerequisite to management control’’.
The importance of metrics have also been highlighted by the famous
physicist Lord Kelvin [33]: ‘‘When you can measure what you are
speaking about, and express it in numbers, you know something
about it; but when you cannot measure it, when you cannot express
it in numbers, your knowledge is of a meagre and unsatisfactory
kind: it may be the beginning of knowledge, but you have scarcely,
in your thoughts, advanced to the state of science’’. For these rea-
sons, in this work we focus on complexity measures, which quantify
the effort required to complete any kind of task.

First, it is needed to define what program complexity means.
Basili [5] defines complexity as a measure of the resources used
by a system while interacting with a piece of software to perform
a given task. If the interacting system is a computer, then complex-
ity is defined by the execution time and storage required to
perform the computation described by the program. If the interact-
ing system is a programmer then complexity is defined by the
difficulty of performing tasks such as coding, debugging, testing
or modifying the software. There exist metrics introduced as
all-purpose measures of software complexity, however these mea-
sures seem to be ineffective in order to measure the testing com-
plexity [16]. The absence of a metric to properly measure the
difficulty to test a piece of code encourage us to characterize the
testing complexity.

Analyzing the testing complexity, it can be seen as the difficulty
for a computer to create a test suite for finding errors in the devel-
oped code. Finding errors in early stages of the development is an
important task that saves costs of the project. A detailed survey in
the United States quantifies the high economic impacts of an inad-
equate software testing infrastructure [32]. Besides that, it is esti-
mated that half the time spent on the software project
development and more than half its cost, is devoted to testing the
product [27]. To this end, in recent years researchers have at-
tempted to predict fault-prone software modules using complexity
metrics [36]. In addition, the overall experimental results show that
complexity metrics are able to predict fault-prone source code [37].

In the last few years, there has been a renewed deal of interest
in defining appropriate ways to measure the complexity of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2013.07.007&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2013.07.007
mailto:ferrer@lcc.uma.es
mailto:chicano@lcc.uma.es
mailto:eat@lcc.uma.es
http://dx.doi.org/10.1016/j.infsof.2013.07.007
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof


2126 J. Ferrer et al. / Information and Software Technology 55 (2013) 2125–2139
software [15,26]. In most previous works they defined the testing
complexity as the number of test cases required [35,22]. Some
works try to compute the lower bound [7] of the test cases re-
quired, and other works try to provide better understanding on
the testing criterion used to generate those test cases [23]. How-
ever, they do not focus on the effort to generate these test cases.
In a recent work, Nogueira focuses on the correlation between
the complexity of the software under test and the complexity of
the test cases [28], but the work did not propose any estimation
measure.

We propose in this work a new complexity measure with the
aim of helping the tester to find errors in the code. This measure
will predict in a better way the behavior of an automatic test data
generator depending on the program under test. This original com-
plexity measure, called ‘‘Branch Coverage Expectation’’, is the main
contribution of this paper. The definition of the new measure lies
on a Markov model that represents the program. Based on the
model of a program, we can also provide an estimation of the num-
ber of random test cases that must be generated to obtain a con-
crete coverage. From these estimations, we can create a
theoretical prediction of the evolution of the coverage depending
on the number of generated test cases. This second contribution
will help the testers to obtain some knowledge about the possible
evolution of the testing phase.

The validation of the proposed measure is also addressed in this
work. For the theoretical validation of the Branch Coverage Expec-
tation we have used the validation framework proposed by Kitch-
enham et al. [19]. For the experimental validation we have used
Evolutionary and Random Testing techniques, which are the most
popular search algorithms for automatically generating test cases
[1,2,12,21], to compare our estimation with the real value obtained
by several test data generators.

Finally, we also analyze software complexity measures at pro-
gram level and we discuss a number of issues associated with these
known measures. In addition, we have performed an experimental
study of correlations with the aim of highlighting the existing rela-
tionships among some static measures. We are especially inter-
ested in the existing relationships between the static measures
and the branch coverage. In this experimental study we have used
two large groups of automatically generated programs to serve as a
benchmark.

The rest of the paper is organized as follows. In the next section
we present the measures that we later use in our experimental
study. In Section 3 we explain the Markov model on which two
of our main contributions in this paper are based: the definition
of the BCE measure and the estimation of the number of test cases
required to obtain a particular branch coverage. In Section 4 we ex-
plain the details of the automatic test data generator and the
benchmark of programs that we use in the experimental section.
Later, Section 5 describes the experimental study performed. To-
wards the end of the article, we describe the threats to the validity
of our experimental evaluation in Section 6. Finally, Section 7 out-
lines some conclusions and future work.

2. Static measures

Quantitative models are frequently used in different engineer-
ing disciplines for predicting situations, due dates, required cost,
and so on. These quantitative models are based on some kind of
measure made on project data or items. Software Engineering is
not an exception. A lot of measures are defined in Software Engi-
neering in order to predict software quality [30], task effort [8],
etc. We are interested here in measures made on source code
pieces. We distinguish two kinds of measures: dynamic, which re-
quire the execution of the program, and static, which do not.
Some time ago, project managers began to worry about con-
cepts like productivity and quality, then the lines of code (LOC)
metric was proposed. Nowadays, the LOC metric is still the primary
quantitative measure in use. An examination of the main metrics
reveals that most of them confuse the complexity of a program
with its size. The underlying idea of these measures are that a pro-
gram will be much more difficult to work with than a second one if,
for example, it is twice the size, has twice as many control paths
leading through it, or contains twice as many logical decisions.
Unfortunately, these various ways in which a program may in-
crease in complexity tend to move in unison, making it difficult
to identify the multiple dimensions of complexity.

In this section we present the measures used in this study. In a
first group we select the main measures that we found in the
literature:

� Lines of Code (LOC)
� Source Lines of Code (SLOC)
� Lines of Code Equivalent (LOCE)
� Total Number of Disjunctions (TNDj)
� Total Number of Conjunctions (TNCj)
� Total Number of Equalities (TNE)
� Total Number of Inequalities (TNI)
� Total Number of Decisions (TND)
� Number of Atomic Conditions per Decision (CpD)
� Nesting Degree (N)
� Halstead’s Complexity (HD)
� McCabe’s Cyclomatic Complexity (MC)

Let’s have a look at the measures that are directly based on
source lines of code (in C-based languages). The LOC measure is a
count of the number of semicolons in a method, excluding those
within comments and string literals. The SLOC measure counts
the source lines that contain executable statements, declarations,
and/or compiler directives. However, comments, and blank lines
are excluded. The LOCE measure [31] is based on the idea of weigh-
ing each source line of code depending on how nested it is. The
previous three measures based on the lines of code have several
disadvantages:

� Depend on the print length
� Depend of the programmer’s style for writing source code
� Depend on how many statements does one put in one line

We have analyzed several measures as the total number of
disjunctions (OR operator) and conjunctions (AND operator) that
appear in the source code, these operators join atomic conditions.
The number of (in) equalities is the number of times that the
operator (!=) = = is found in atomic conditions of a program. The
total number of decisions and the number of atomic conditions
per decision do not require any comment. The nesting degree is
the maximum number of control flow statements that are nested
one inside another. In the following paragraphs we describe the
McCabe’s cyclomatic complexity and the Halstead complexity
measures in detail.

Halstead complexity measures are software metrics [14]
introduced by Maurice Howard Halstead in 1977. Halstead’s
Metrics are based on arguments derived from common sense,
information theory and psychology. The metrics are based on four
easily measurable properties of the program, which are:

� n1 = the number of distinct operators
� n2 = the number of distinct operands
� N1 = the total number of operators
� N2 = the total number of operands



J. Ferrer et al. / Information and Software Technology 55 (2013) 2125–2139 2127
From these values, six measures can be defined:

� Halstead Length (HL): N = N1 + N2
� Halstead Vocabulary (HV): n = n1 + n2
� Halstead Volume (HVL): V = N � log2 n
� Halstead Difficulty (HD): HD ¼ n1

2 �
N2
n2

� Halstead Level (HLV): L ¼ 1
HD

� Halstead Effort (HE): E = HD � V
� Halstead Time (HT): T ¼ E

18
� Halstead Bugs (HB): B ¼ V

3000

The most basic one is the Halstead Length, which simply totals
the number of operators and operands. A small number of
statements with a high Halstead Volume would suggest that the
individual statements are quite complex. The Halstead Vocabulary
gives a clue on the complexity of the statements. For example, it
highlights if a small number of operators are used repeatedly (less
complex) or if a large number of different operators are used,
which will inevitably be more complex. The Halstead Volume uses
the length and the vocabulary to give a measure of the amount of
code written. The Halstead Difficulty uses a formula to assess the
complexity based on the number of unique operators and
operands. It suggests how difficult the code is to write and main-
tain. The Halstead Level is the inverse of the Halstead Difficulty:
a low value means the program is prone to errors. The Halstead Ef-
fort attempts to estimate the amount of work that it would take to
recode a particular method. The Halstead Time is the time to
implement or understand a program and it is proportional to the
effort. The experiments were used for calibrating this quantity
but nowadays it is not true that dividing the effort by 18 gives
an approximation for the time in seconds. The Halstead Bugs at-
tempts to estimate the number of bugs that exist in a particular
piece of code.

McCabe’s cyclomatic complexity is a complexity measure re-
lated to the number of ways there exists to traverse a piece of code.
This measure determines the minimum number of test cases
needed to test all the paths using linearly independent circuits
[25]. Cyclomatic complexity is computed using the control flow
graph of the program: the nodes of the graph correspond to indi-
visible groups of sentences of a program (basic blocks), and a direc-
ted edge connects two nodes if the second group of sentences
might be executed immediately after the first one. Cyclomatic
complexity may also be applied to individual functions, modules,
methods or classes within a program, and is formally defined as
follows:

vðGÞ ¼ Ed� Ndþ 2P; ð1Þ

where Ed is the number of edges of the graph, Nd is the number of
nodes of the graph and P is the number of connected components.

The correlation between the cyclomatic complexity and the
number of software faults has been studied in some research arti-
cles [6,18]. Most such studies find a strong positive correlation be-
tween the cyclomatic complexity and the errors: the higher the
complexity the larger the number of faults. For example, a 2008
study by metric-monitoring software supplier Energy [11] ana-
lyzed classes of open-source Java applications and divided them
into two sets based on how common mistakes were found in them.
They found a strong correlation between the cyclomatic complex-
ity and their faultiness, with classes with a combined complexity of
11 having a probability of being fault-prone of just 0.28, rising to
0.98 for classes with a complexity of 74.

In addition to this correlation between complexity and errors, a
connection has been found between complexity and difficulty to
understand software. Nowadays, the subjective reliability of
software is expressed in statements such as ‘‘I understand this
program well enough to know that the tests I have executed are
adequate to provide my desired level of confidence on it’’. For that
reason, we make a close link between complexity and difficulty of
discovering errors. Software complexity metrics developed
by Halstead and McCabe are related to the difficulty
programmers experience in locating errors in code [9]. They can
be used in providing feedback to programmers about the complex-
ity of the code they have developed and to managers about the re-
sources that will be necessary to maintain particular sections of
code.

Since McCabe proposed the cyclomatic complexity, it has re-
ceived several criticisms. Weyuker [34] concluded that one of the
obvious intuitive weaknesses of the cyclomatic complexity is that
it makes no provision for distinguishing between programs which
perform very little computation and those which perform massive
amounts of computation, provided that they have the same deci-
sion structure. Piwarski [29] noticed that cyclomatic complexity
is the same for N nested if statements and N sequential if state-
ments. Moreover, we find the same weaknesses in the group of
Halstead’s metrics. No notice is made for the nesting degree, which
may increase the effort required by the program severely. The solu-
tion of both McCabe’s and Halstead’s weakness is a factor to con-
sider that a nested statement is more complex. For example, we
have also studied the LOCE measure that takes into account
whether a statement is nested or not.

The proposed existing measures of decision complexity tend to
be based upon a graph theoretical analysis of a program control
structure like McCabe’s complexity. Such measures are meaningful
at the program and subprogram level, but metrics computed at
those levels will depend on program or subprogram size. However,
the values of these metrics primarily depend upon the number of
decision points within a program. This suggests that we can com-
pute a size-independent measure of decision complexity by mea-
suring the density of decisions within a program. In addition we
have considered making the LOCE measure size-independent. The
resulting expression takes into account the nesting degree and
the density of the sentences. Following this assumption, we con-
sider in this paper two measures derived from some of the first
group:

� Density of Decisions (DD) = TND/LOC.
� Density of LOCE (DLOCE) = LOCE/LOC.

Finally, we present the dynamic measure used in the study:
Branch Coverage. Before defining a coverage measure, it is neces-
sary to determine which kind of element is going to be ‘‘covered’’.
Different coverage measures can be defined depending on the kind
of element to cover. Statement coverage, for example, is defined as
the percentage of statements (sentences) that are executed. In this
work we use Branch Coverage, which is the percentage of branches
of the program that are traversed. This coverage measure is used in
most of the related articles in the literature. We formally define the
Branch Coverage as follows: Let P be a program, we denote with BP

the set of branches of the program and with BranchExecP(C) the set
of branches covered in P due to the execution of a given test suite,
C. We define the branch coverage of the test suite C, BrCovP(C), as
the ratio between the traversed branches in the executions of the
program P with the test suite C and the number of branches of
the program, i.e.,
BrCovPðCÞ ¼
jBranchExecPðCÞj

jBP j
: ð2Þ

The adequacy criterion of branch coverage states that a test
suite C for a program P is ‘‘adequate’’ when BrCovp(C) = 1.



2128 J. Ferrer et al. / Information and Software Technology 55 (2013) 2125–2139
3. New complexity measure: Branch Coverage Expectation

This section is aimed at presenting a new complexity measure
that might help testers to estimate the difficulty of testing a piece
of code. The definition of the new measure lies on a Markov chain
that represents the program. In this section we briefly explain the
characteristics of a Markov chain and the way we generate a model
of a given program. The Markov model of the program can be used
not only to compute the BCE, but also to estimate the number of
random test cases that must be generated to achieve a concrete va-
lue of branch coverage. We first introduce the required concepts of
Markov chains [20].

3.1. Markov chain

A first order Markov chain is a random sequence of states Xt

where each state depends only on the previous one. That is,
P(Xt+1 = jjXk; �1 < k 6 t) = P(Xt+1 = jjXt) for all t 2 N. We consider
here that the set of possible states is finite and, without loss of gen-
erality, we label the states using elements of the set [n] = {1, . . . ,n}.
The conditional probabilities of a first order Markov chain P(Xt+1 = -
jjXt = i) = Pij(t) are called one-step transition probabilities and the
matrix P(t) = [Pij(t)] is the so-called transition probability matrix.
We will assume here that these probabilities do not depend on
the step t, and thus, Pij(t) = Pij for all t. The Markov chains fulfilling
this property are called homogeneous. Two properties of the transi-
tion probability matrices are:

Pij P 0; ð3Þ
Xn

j¼1

Pij ¼ 1: ð4Þ

Matrices fulfilling the above equations are called stochastic. Let
us denote with the column vector q(t) the probability distribution
of the states at step t. The component qi(t) is the probability of hav-
ing state i at step t. A state which is reached infinitely often in a fi-
nite Markov chain is called positive-recurrent. If every state in a
Markov chain can be reached from every other state, then we say
that the Markov chain is irreducible. For irreducible Markov chains
having only positive-recurrent states the probability distribution of
the states q(t) tends to a given probability distribution p as the
time tends to infinite. This probability distribution p is called the
stationary distribution and can be computed solving the following
linear equations:

pT P ¼ pT ; ð5Þ
pT 1 ¼ 1: ð6Þ
3.2. Definition of BCE

In our case the Markov model is built from the Control Flow
Graph (CFG) of the program, where the states of the Markov chain
are the basic blocks of the program. A basic block (BB) is a portion
of the code that is executed sequentially with no interruption. It
has one entry point and one exit point, meaning that only the last
instruction can be a jump. Whenever the first instruction in a basic
block is executed, the rest of the instructions are necessarily exe-
cuted exactly once, in order. In order to completely characterize
a Markov chain we must assign a value to the edges among verti-
ces. The transition probabilities of all branches are computed
according to the logical expressions that appear in each condition.
We recursively define this probability as follows:
Pðc1&&c2Þ ¼ Pðc1Þ � Pðc2Þ; ð7Þ
Pðc1kc2Þ ¼ Pðc1Þ þ Pðc2Þ � Pðc1Þ � Pðc2Þ; ð8Þ
Pð– c1Þ ¼ 1� Pðc1Þ; ð9Þ

Pða < bÞ ¼ 1
2
; ð10Þ

Pða 6 bÞ ¼ 1
2
; ð11Þ

Pða > bÞ ¼ 1
2
; ð12Þ

Pða P bÞ ¼ 1
2
; ð13Þ

Pða ¼¼ bÞ ¼ q; ð14Þ
Pða! ¼ bÞ ¼ 1� q; ð15Þ

where c1 and c2 are conditions.
We establish a 1/2 probability when the operators are ordering

relational operators (<,6, >,P). Despite that the actual probability
in a random situation is not always 1/2, we have selected the value
with the lowest error rate. In the case of equalities and inequalities
the probabilities are q and 1 � q, respectively, where q is a param-
eter of the measure and its value should be adjusted based on the
experience. Satisfying an equality is, in general, a hard task and,
thus, q should be close to zero. This parameter could be highly
dependent on the data dependencies of the program. The quality
of the complexity measure depends on a good election for q. We
delay to future work the thorough analysis of this parameter. Based
on a previous phase for setting parameters, we use q = 1/16 for the
experimental analysis.

Then, once we have the CFG completed with the transition
probabilities, the generation of the transition matrix is automatic.
This matrix relates the states and the probability to move from
one to another. We assume, without loss of generality, that there
is only one entry and exit basic block in the code. Then, in order
to obtain a positive-recurrent irreducible Markov chain we add a
fictional link from the exit to the entry basic block (labeled as
BB1) having probability 1. We then compute the stationary proba-
bility p and the frequency of appearance of each basic block in one
single execution of the program (E[BBi]). The stationary probability
of a basic block is the probability of appearance in infinite program
executions starting in any state. On the other hand, the frequency
of appearance of a basic block is the mathematical expectation of
traversing the basic block in one single execution and is computed
as:

E½BBi� ¼
pi

p1
; ð16Þ

where p1 is the stationary probability of the entry basic block, BB1.
Thus, the expectation of traversing a branch (i, j) is computed

from the frequency of appearance of the previous basic block and
the probability to take the concrete branch from the previous basic
block as:

E½BBi;BBj� ¼ E½BBi� � Pij ð17Þ

Finally, we define the Branch Coverage Expectation (BCE) as the
average of the values E[BBi,BBj] with a value lower than 1/2. If a
program has a low value of BCE then a random test case generator
is supposed to require a large number of test cases to obtain full
branch coverage. The BCE is bounded in the interval (0,1/2]. For-
mally, let A be the set of edges with E[BBi,BBj] < 1/2:

A ¼ ði; jÞjE½BBi;BBj� <
1
2

� �
: ð18Þ

Then, the BCE is defined as:



Fig. 2. The CFG and the probabilities used to build a Markov Chain of the piece of
code of Fig. 1.

Table 1
Stationary probabilities and the frequency of appearance of the basic blocks of the
piece of code shown above.

Stationary probabilities pi Frequency of appearance E[BBi]

BB1 0.2500 1.00
BB2 0.1875 0.75
BB3 0.0625 0.25
BB4 0.1875 0.75
BB5 0.0625 0.25
BB6 0.2500 1.00

J. Ferrer et al. / Information and Software Technology 55 (2013) 2125–2139 2129
BCE ¼ 1
jAj
X
ði;jÞ2A

E½BBi;BBj�: ð19Þ

In the experimental section we analyze the new complexity
measure over program artifacts, nevertheless we illustrate here
its computation based on the piece of code shown in Fig. 1. First,
we compute the Control Flow Graph (CFG) of this piece of code,
which can be seen in Fig. 2. This CFG is composed of BBs and tran-
sitions among the BBs. Interpreted as a Markov chain, the basic
blocks are the states, and the transitions are defined by the proba-
bilities to move from one basic block to another. These probabili-
ties depend on the condition associated to a concrete branch. For
example, to move from BB1 to BB2 in our example, the condition
(x < 0)k(y < 2) must be true, then according to Eqs. (2)–(10) the
probability of this transition is:

Pððx < 0Þkðy < 2ÞÞ ¼ Pðx < 0Þ þ Pðy < 2Þ � Pðx < 0Þ � Pðy < 2Þ

¼ 1
2
þ 1

2
� 1

2
� 1

2
¼ 3

4
¼ 0:75:

Once we have computed all the transition probabilities, we
build the transition matrix that represents the Markov chain.

P ¼

0:0 0:75 0:25 0:0 0:0 0:0
0:0 0:0 0:0 0:0 0:0 1
0:0 0:0 0:0 0:75 0:25 0:0
0:0 0:0 0:0 0:75 0:25 0:0
0:0 0:0 0:0 0:0 0:0 1
1 0:0 0:0 0:0 0:0 0:0

0
BBBBBBBB@

1
CCCCCCCCA

We can now compute the stationary probabilities p and the
frequency of appearance E[BBi] of the basic blocks in one execution
of the program (see Table 1). It is sure that the control flow of the
program traverses exactly once the BB1 and BB6 in one run. In this
way, the start and the end of the program always have a E[BBi] = 1.
An example of the computation of the mathematical expectation
is:

EðBB2Þ ¼
p2

p1
¼ 0:1875

0:2500
¼ 0:75:

The stationary probability and the frequency of appearance of
the BBs in a single execution of the piece of code can be seen in
Table 1. Now, we are able to compute the probability of appearance
of a branch in one single run. For example the expectation of tra-
versing the branch BB3 � BB4 is:
Fig. 1. A piece of code to illustrate the computation of Branch Coverage
Expectation.
E½BB3;BB4� ¼ EðBB3Þ � P34 ¼
1
4
� 3

4
¼ 3

16
¼ 0:1875:

In Fig. 3 we show the mathematical expectations of traversing
all the branches of the CFG of our example in one single execution.
So, finally we can compute the BCE by averaging the expectations
of traversing the branches which have a value lower than 1/2. We
have excluded those values equals to 1/2 because both branches
have the same value. In case all branches have the expectation of
1/2, then the BCE is 1/2. In addition, a program with a Branch Cov-
erage Expectation value of 1/2 would be the easiest one to be
tested. In this example the value of BCE is:

BCE¼ E½BB1;BB3�þE½BB3;BB4�þE½BB3;BB5�þE½BB4;BB5�þE½BB5;BB6�
5

¼
1
4þ 3

16þ 1
16þ 3

16þ 1
4

5
¼ 3

16
¼0:1875:

Based on the model of a program, we can also provide an esti-
mation of the number of random test cases that must be generated
to obtain a concrete coverage. Following with the example, execut-
ing the branch (BB3,BB5) is more difficult according to the expecta-
tions than the others. The inverse of this expectation, is the
expected number of random test cases that must be generated to
execute the branch. In this example, the number of expected test
cases needed to traverse the branch between BB3 and BB5 is:

Number of test cases (BB3,BB5) = 1
1

16
¼ 16.

From these estimations, we can create a theoretical prediction
of the evolution of the coverage depending on the number of gen-
erated test cases. This contribution could help the testers to obtain
some knowledge about the possible evolution of the testing phase.



Fig. 3. The CFG and the expectations of traversing each branch in the piece of code
of Fig. 1.

2130 J. Ferrer et al. / Information and Software Technology 55 (2013) 2125–2139
In the experimental section (Section 5.3) we compare our theoret-
ical prediction with the results obtained by a test case generator.

3.3. Validation of the Branch Coverage Expectation

Software applications are essential for Industry and software
measurement is a key factor in understanding and controlling
software development practices. Consequently, measures must
represent accurately those attributes which they quantify. Thus,
validation is critical when a new measure is introduced. The soft-
ware measurement validation implies two basic methods, theoret-
ical and empirical validation. Theoretical methods allow us to say
that a measure is valid with respect to certain criteria, meanwhile
empirical methods only provide evidence of validity or invalidity.
In the experimental section we obtain evidences of the validity
of the proposed measure, but first, in this section we focus on the-
oretical validity using the framework proposed by Kitchenham
et al. [19]. The requirements defined when validating a measure
are attribute validity, unit validity, instrument validity, and proto-
col validity:

� Attribute validity: Attributes are the properties that an entity
possesses. For a given attribute, there is a relationship of inter-
est in the empirical world that we want to capture formally in
the mathematical world. The attribute we consider for our mea-
sure is the testing complexity of a piece of software. Two mea-
sures are defined to estimate testing complexity: ‘‘Branch
Coverage Expectation’’ (BCE) and ‘‘number of expected test
cases’’ (related to the inverse of BCE). And both are estimated
by capturing transition probabilities at each edge among verti-
ces (decisions and conditions of branches). The measure is able
to satisfy the proposed criteria. There could be two different
programs for which the measure results in different values.
Our measure also obey the Representation Condition. The BCE
value of two programs is the same, when they are the same
except they have different labels. So, different programs can
have the same BCE value.
� Unit validity: A measure maps an empirical attribute to the for-

mal, mathematical world. A measurement unit determines how
we measure an attribute. We define the unit of BCE by reference
to a wider theory explained in the previous subSection 3.1
(Markov Chain). We must highlight that the inverse of the
BCE measure is related to the number of test cases needed to
achieve full coverage by a random test case generator. Then,
the measurement unit used by the BCE is numberof testcases�1.
In conclusion, we use an alternative unit that is valid because is
an admissible transformation from an original unit (number of
test cases).
� Instrument validity: The instrument model as it defines how to

capture the data, is also theory based. The validity again
depends on the validity of the underlying theory. It can be
defined by reference to properties of the control flow graph.
Our instrument model is valid because the underlying theory-
based model is valid. For example, we can use a thermometer
to measure temperature, or a software program to count the
number of lines of code in a program.
� Protocol validity: Measurement protocols let us measure a spe-

cific attribute on a specific entity consistently and repeatedly.
We can measure a specific attribute of a program consistently,
repeatable, and the measurement is independent of the mea-
surer. Our measurement protocols are unambiguous, self-con-
sistent, and prevent problems such as double counting. The
same measurement could be done with a different measurer
obtaining the same results. A protocol that does not violate
these criteria is usually validated by peer acceptance rather
than logical or empirical studies.

Empirical validation of our proposed measure is required, so we
are introducing in the next section a tool for generating test data, a
tool for generating synthetic programs, and a benchmark of real
and synthetic programs, which will help us to compare our estima-
tion of BCE with the result of branch coverage obtained by the exe-
cution of our testing tool. Branch Coverage is the dynamic measure
used in this work to measure the difficulty of testing a program.
The test data generator goal is generating a test suite that covers
all the source code, with the aim of helping the tester to find errors
in the code.

Finally, we claim that our measure is valid because we are un-
able to invalidate it using the Kitchenham et al. framework.
4. Experimental benchmark

In this section we outline the test case generation tool [13] used
for empirical validation of our proposed measure. We also explain
a novel automatic program generator. We have developed this gen-
erator to create the variety of programs that we use in the exper-
imental section. Then, we outline the main characteristics of the
used benchmark.
4.1. Evolutionary test case generator

Our test case generator breaks down the global objective (to
cover all the branches) into several partial objectives consisting
of covering only one branch of the program. Then, each partial
objective can be treated as a separate optimization problem in
which the function to be minimized is a distance between the cur-
rent test case and one satisfying the partial objective. In order to
solve such minimization problem Evolutionary Algorithms (EAs)
are used. The main loop of the test case generator is shown in
Fig. 4.

In a loop, the test case generator selects a partial objective (a
branch) and uses the optimization algorithm to search for test
cases exercising that branch. After the optimization algorithm
stops, the main loop starts again and the test case generator selects
a different branch. This scheme is repeated until total branch cov-
erage is obtained or a maximum number of consecutive failures of
the optimization algorithm is reached. When this happens the test



Fig. 4. The test case generation process.

J. Ferrer et al. / Information and Software Technology 55 (2013) 2125–2139 2131
data generator exits the main loop and returns the sets of test cases
associated to all the branches.

EAs [4] are metaheuristic search techniques loosely based on
the principles of natural evolution, namely, adaptation and survival
of the fittest. These techniques have been shown to be very effec-
tive in solving hard optimization tasks. In this work we use two
EAs as the optimization algorithm of the test case generator: an
evolutionary strategy (ES) and a genetic algorithm (GA). We show
in Table 2 a summary of the parameters used by the two EAs in the
experimental section.
4.2. Automatic program generator

We have designed an automatic program generator able to gen-
erate programs with values for the static measures that are similar
to the ones of the real-world software, but the generated programs
do not solve any concrete problem. Our program generator is able
to create programs for which total branch coverage is possible. We
propose this generator with the aim of generating a big benchmark
of programs with certain characteristics chosen by the user.

In a first approximation we could create a program using a rep-
resentation based on a general tree and a table of variables. The
tree stores the sentences that are generated and the table of vari-
ables stores basic information about the variables declared and
their possible use. With these structures, we are able to generate
programs, but we can not ensure that all the branches of the gen-
erated programs are reachable. The unreachability of all the
branches is a quite common feature of real-world programs, so
we could stop the design for the generator at this stage. However,
another objective of the program generator is to be able of creating
programs that can be used to compare the performance of different
algorithms, programs for which total coverage is reachable are
Table 2
Parameters of the two EAs used in the experimental section.

ES GA

Population 25 indivs. 25 indivs.
Selection Random, 5 indivs. Random, 5 indivs.
Mutation Gaussian Add U(�500,500)
Crossover Discrete (bias = 0.6) Uniform

+ arith. + arith.
Replacement Elitist Elitist
Stopping cond. 1000 evals. 1000 evals.
desirable. With this goal in mind we introduce logic predicates in
the program generation process.

The program generator is parameterizable, the user can set sev-
eral parameters of the program under construction (PUC). Thus, we
can assign through several probability distributions the number of
sentences of the PUC, the number of variables, the maximum num-
ber of atomic conditions in a decision, and the maximum nesting
degree by setting these parameters. The user can define the struc-
ture of the PUC and, thus, its complexity. Another parameter the
user can tune is the percentage of control structures or assignment
sentences that will appear in the code. By tuning this parameter
the program will contain the desired density of decisions.

Once the parameters are set, the program generator builds the
general scheme of the PUC. It stores in the used data structure (a
general tree) the program structure, the visibility, the modifiers of
the program, and creates a main method where the local variables
are first declared. Then, the program is built through a sequence of
basic blocks of sentences where, according to a probability, the pro-
gram generator decides which sentence will be added to the pro-
gram. The creation of the entire program is done in a recursive
way. The user can decide whether all the branches of the generated
program are reachable (using logic predicates).

If total reachability is desired, logic predicates are used to rep-
resent the set of possible values that the variables can take at a gi-
ven point of the PUC. Using these predicates we can know which is
the range of values that a variable can take. This range of values is
useful to build a new condition that can be true or false. For exam-
ple, if at a given point of the program we have the predicate x 6 3
we know that a forthcoming condition x 6 100 will be always true
and if this condition appears in an if statement, the else branch
will not be reachable. Thus, the predicates are used to guide the
program construction to obtain a 100% coverable program.

In general, at each point of the program the predicate is differ-
ent. During the program construction, when a sentence is added to
the program, we need to compute the predicate at the point after
the new sentence. For this computation we distinguish two cases.
First, if the new sentence is an assignment then the new predicate
CP0 is computed after the previous one CP by updating the values
that the assigned variable can take. For example, if the new sen-
tence is x = x + 7 and CP � x 6 3, then we have CP0 � x 6 10.

Second, if the new sentence is a control statement, an if state-
ment for example, then the program generator creates two new
predicates called True-predicate (TP) and False-predicate (FP).
The TP is obtained as the result of the AND operation between CP
and the generated condition related to the control statement. The



Table 3
Range of values for some static measures from the two benchmarks of programs.

100% CP –100% CP

SLOC 33–150 33–235
Nesting 1–4 1–7
Conditions 1–4 1–7
Decisions 3–50 1–37
McCabe 5–125 3–127

Table 4
Characteristics of the real programs.

2132 J. Ferrer et al. / Information and Software Technology 55 (2013) 2125–2139
FP is obtained as the result of the AND operation between the CP
and the negated condition. In order to ensure that all the branches
can be traversed, we check that both, TP and FP are not equivalent
to false. If any of them were false, this new predicate is not valid
and a new control structure would be generated.

Once these predicates are checked, the last control statement is
correct and new sentences are generated for the two branches and
the predicates are computed inside the branches in the same way.
After the control structure is completed, the last predicates of the
two branches are combined using the OR operator and the result
is the predicate after the control structure. In Fig. 5 we illustrate
the previous explanation with one example.

At a certain point of the program’s execution our current predi-
cate (CP1) is x 6 3. The new sentence is an if statement with an
associated decision x < 0. Then, the program generator creates two
new predicates. The first one (CP2) is CP1 ^ x < 0 � x < 0. The second
one is the AND operation between CP1 and the negation of x < 0,
which is x P 0. The resulting expression is CP4 � 0 6 x 6 3. Next,
the program generator modifies the predicates according to the
assignment sentences. Finally, the resulting expression after the
execution of the if statement is CP6 � x < 0 ^ y = 5 _ �3 6 x 6 0.
This expression is the OR operation between CP3 (true branch) and
CP5 (false branch). Those values that satisfy the logic predicate
may participate in the following generated sentences.

4.3. Benchmark of test programs

The program generator can create programs having the same
value for the static measures, as well as programs having different
values for the measures. The programs we generated for this paper
can be separated in two groups. One group is characterized by
being 100% coverable (called 100%CP), thus all the branches are
reachable. The main advantage of these programs is that algo-
rithms can be tested and analyzed on fair way. This kind of pro-
grams is not easy to find in the literature. On the other hand, the
other group of programs do not guarantee a 100% branch coverage,
called –100%CP, this fact makes them similar to the real world
programs.

The methodology applied for the program generation was the
following. First, we analyzed a set of Java source files from the
JDK 1.5 (java.util.⁄, java.io.⁄, java.sql.⁄, etc.) and we computed
the static measures on these files. Next, we used the ranges of
the most interesting measures, obtained in this previous analysis
as a guide to generate Java source files having values in the same
range for the static measures. These values are realistic with
respect to the static measures, making the following study mean-
ingful. Our program generator takes into account the desired val-
ues for the number of atomic conditions, the nesting degree, the
Fig. 5. Illustration of the predicates transformation.
number of sentences and the number of variables. With these
parameters the program generator creates a program with a de-
fined control flow graph containing several conditions. The main
features of the generated programs are: they deal with integer in-
put parameters, their conditions are joined by whichever logical
operator and they are randomly generated. This way, we generated
programs with the values in the ranges shown in Table 3.

Finally, we generated a total of 2600 (800 in 100%CP and 1800 in
–100%CP) Java programs using our program generator. With the
aim of studying the BCE, we applied our test case generator using
an ES and a GA as optimization algorithms and a random test case
generator (RND). The test case generators proceed by generating
test data until total coverage is obtained or a maximum of
150,000 test cases are generated. Since we are working with
stochastic algorithms, we perform in all the cases 30 independent
runs of the algorithms to obtain a very stable average of the branch
coverage. The experimental study requires a total of
2600 � 30 � 3 = 234,000 independent runs of the test case genera-
tors. We need to perform a statistical analysis of the obtained re-
sults to compare them with a certain level of confidence. The
statistical test that we have carried out is the non-parametric Krus-
kal–Wallis test used to compare the average of the algorithms. We
always consider in this work a confidence level of 95% (i.e., p-value
under 0.05) in the statistical tests, which means that the differences
are unlikely to have occurred by chance with a confidence of 95%.
4.3.1. Real programs
In order to improve the interest of our work we propose an

additional benchmark of real programs. It is composed of 10 real
programs extracted from the literature [3,17,24]. Some of them
have been extracted from the book C Numerical Recipes, available
on-line at http://www.nr.com/. They deal with real and integer
input values and some of them also contain loops. The programs
are listed in Table 4, where we inform on the maximum nesting
Name ND LOC Branches Arguments Description

calday 2 47 22 3 Integer Calculate the day of the
week

gcd 2 28 8 2 Integer Greatest common
denominator

line 8 92 36 8 Integer Check if two rectangles
overlap

numbers 3 71 28 1 Integer Parse a big number from
integer to string

qformula 2 24 4 3 Double Solve Real Equations
qformulas 2 22 6 3 Integer Solve Integer Equations
tmichael 5 69 20 3 Integer Classify triangles in 4

types: Michael
triangle 4 53 28 3 Integer Classify triangles in 4

types: Our
implementation

tsthamer 3 76 26 3 Integer Classify triangles in 5
types: Sthamer

twegener 3 46 26 3 Double Classify triangles in 5
types: Wegener



J. Ferrer et al. / Information and Software Technology 55 (2013) 2125–2139 2133
degree, the lines of code (LOC), the number of branches, and the
number and type of input arguments.
5. Experimental results

In this section we describe the experimental analysis performed
and we interpret the relationship of the studied measures. We di-
vide the main study in four subsections. In the first one, we analyze
the static measures in order to reveal their correlations. In the sec-
ond subsection, we highlight the existing relationship between the
static measures and the code coverage. We analyze which of them
are more appropriate for estimating the difficulty for a computer to
generate an adequate test suite. In the third subsection, we use the
Markov model of programs to predict the relationship between
coverage and the number of required test cases. We analyze if
our theoretical prediction is similar to a real execution of an auto-
matic test case generator. Finally, we perform the study on the real
world programs.

For computing correlations among measures we use the Spear-
man’s correlation coefficient q. This coefficient takes into account
the rank of the values of the samples instead of the samples
themselves.
5.1. Analysis of the correlation between the static measures

In this section we analyze the existing relationship among the
static measures of the generated programs. With this previous
study we want to clarify the possible similarities and differences
of the analyzed static measures in this paper.

In this study there are three different measures that try to rate
the complexity of a program: McCabe’s complexity, the Halstead
Difficulty and LOCE. In Tables 5 and 6 we show a comparison of
correlation between these measures, the nesting degree and the
group of measures derived from some of the first group (density
of decisions and density of LOCE). We show these measures
because we expect that they are highly correlated with the branch
Table 5
Correlation coefficient of the most interesting static measures in the 100%CP
benchmark. We highlight the highest value per row.

100%CP

MC HD LOCE N DD DLOCE BCE

MC � 0.796 0.965 0.266 0.519 0.408 0.025
HD 0.796 � 0.786 �0.108 0.052 �0.035 0.284
LOCE 0.965 0.786 � 0.344 0.515 0.474 �0.038

N 0.266 �0.108 0.344 � 0.765 0.877 �0.540
DD 0.519 0.052 0.515 0.765 � 0.912 �0.377
DLOCE 0.408 �0.035 0.474 0.877 0.912 � �0.485

BCE 0.025 0.284 �0.038 �0.540 �0.377 �0.485 �

The italicized values are the most correlated value per row.

Table 6
Correlation coefficient of the most interesting static measures in the –100%CP
benchmark. We highlight the highest value per row.

–100%CP

MC H LOCE N DD DLOCE BCE

MC � 0.698 0.571 0.257 0.432 0.351 �0.142
HD 0.698 � 0.359 0.062 0.023 0.014 0.051
LOCE 0.571 0.359 � 0.692 0.590 0.833 �0.461

N 0.257 0.062 0.692 � 0.708 0.870 �0.575
DD 0.432 0.023 0.590 0.708 � 0.774 �0.426
DLOCE 0.351 0.014 0.833 0.870 0.774 � �0.556

BCE �0.142 0.051 �0.461 �0.575 �0.426 �0.556 �

The italicized values are the most correlated value per row.
coverage. In addition, we include the BCE measure in order to com-
pare it with the other studied measures.

As we can see, the three measures that rate the complexity (MC,
HD and LOCE) are highly correlated among them in the 100%CP
benchmark and less correlated in the –100%CP one. This gives us
a clue about the similarities that the complexity measures have
among them. On the other hand, the nesting degree is lowly corre-
lated with McCabe’s complexity and Halstead Difficulty. In the case
of LOCE, the correlations with the nesting degree are 0.344 in
100%CP and 692 in –100%CP. This was expected because the LOCE
measure weighs the nested statements. In addition, we can remark
that the Halstead Difficulty does not correlate with the density of
decisions in 100%CP and –100%CP (0.052 and 0.023, respectively).

We can also observe that the static measures that are highly
correlated in one benchmark are highly correlated in the other
one too. This is the case of the relationship between nesting, den-
sity of decisions and density of LOCE that must be emphasized. All
of them are highly correlated, being the correlation between nest-
ing degree and density of LOCE 0.877 in 100%CP and 0.870 in
–100%CP, nesting degree and density of decisions 0.765 in
100%CP and 0.708 in –100%CP and density of decisions and density
of LOCE 0.912 in 100%CP and 0.774 in –100%CP.

Once we have analyzed the other static measures, we report the
correlation coefficients of our proposal and the most important
static measures studied in this paper. The nesting degree must
be emphasized because it is the most correlated static measure
with the BCE, �0.540 in 100%CP and �0.575 in –100%CP, what
means that the nesting degree is the most similar measure. In addi-
tion, we can see that our proposal is not correlated with McCabe’s
and Halstead’s complexities.

This analysis of the three rates of complexity is not complete if
we do not highlight the static measures that are more correlated
with these complexity measures (all correlation coefficients can
be seen in Tables A.10 and A.11). McCabe’s complexity is highly
correlated with the number of conjunctions, disjunctions, equali-
ties and inequalities (0.934, 0.925, 0.829 and 0.811 in 100%CP
and 0.937, 0.936, 0.803 and 0.827 in –100%CP, respectively). These
high coefficients were expected because McCabe’s complexity de-
pends on the CFG of the program. Halstead Difficulty is highly cor-
related with the other Halstead measures. In addition, it is highly
correlated with McCabe’s complexity (0.796 in 100%CP and 0.698
in –100%CP). LOCE is highly correlated with the total number of
decisions and SLOC (0.976 and 0.974) in 100%CP and in –100%CP
(0.814 and 0.717). These results were expected because SLOC and
LOCE are very similar measures and the total number of decisions
gives us an idea of the length of the code. The Halstead Length is
highly correlated with LOC and SLOC, with a minimum value of
correlation of 0.906. Moreover, the other Halstead measures are
highly correlated too, except Halstead Difficulty and Level. This
indicates that several Halstead measures are similar to a simple
count of lines of code.

In this subsection we have provided an overview of static mea-
sures that are part of our study. Now, we know the measures that
are similar and those that are different. In the next section we
show the measures that are more correlated with the branch cov-
erage, which is the way we measure the difficulty of testing a
program.

5.2. Correlation between coverage and static measures

In the previous section we showed the basic relationship among
the static measures, in this section we include the branch coverage
in the study. The existing correlations between the branch cover-
age and the static measures studied give us an idea of which static
measures are useful to determine a priori the complexity of the
automatic test data generation task. In this study we have applied



Table 7
Relationship between the most important static measures and the average branch
coverage for all the algorithms. We highlight the high value of correlation for each
algorithm and benchmark.

100%CP –100%CP

ES GA RND ES GA RND

MC �0.150 �0.226 �0.074 �0.177 �0.168 �0.173
HD 0.070 �0.101 0.077 0.069 0.067 0.079
LOCE �0.186 �0.251 �0.133 �0.461 �0.452 �0.476

N �0.543 �0.381 �0.434 �0.563 �0.554 �0.589
DD �0.439 �0.304 �0.311 �0.476 �0.473 �0.497
DLOCE �0.504 �0.345 �0.397 �0.577 �0.564 �0.602

BCE 0.510 0.375 0.534 0.714 0.698 0.732

The italicized values are the most correlated value per row.

2134 J. Ferrer et al. / Information and Software Technology 55 (2013) 2125–2139
three different test case generators, two based on evolutionary
techniques (ES, GA) and one based on random testing (RND).

The first question we should answer is if there exists a link be-
tween the coverage and the traditional measures of code complex-
ity: McCabe’s, Halstead’s, and LOCE. In Table 7 we show the
correlation coefficients for the most important static measures
and the branch coverage obtained with three automatic test data
generators. The correlations between Halstead’s Difficulty and
the coverage are very low, so the answer is no in this case. The cor-
relation coefficients of McCabe’s complexity are higher than Hal-
stead Difficulty but too low. This result was expected because, as
we showed in the previous section, Halstead Difficulty is highly
correlated with McCabe’s complexity. Finally, the correlation coef-
ficients of LOCE indicate that it is more correlated with the branch
coverage because this measure takes into account the nested state-
ments. After analyzing these results, we realize that the traditional
complexity measures (MC, HD, and LOCE) are not useful to mea-
sure the difficulty of testing a program.

In the second group of measures, there exist higher correlations
with branch coverage. The nesting degree is the static measure
with the highest correlation coefficient with branch coverage in
the 100%CP benchmark for the evolutionary test case generators.
On the other hand, DLOCE is more correlated than the nesting de-
gree in the –100%CP benchmark. Despite that the total number of
decisions is not correlated with coverage, as can be seen in Tables
A.10 and A.11, the density of decisions correlates with the obtained
coverage, as we show in Table 7. Moreover, the density of decisions
is also more correlated than the traditional complexity measures.
In Fig. 6 the trend indicates that the programs with a high density
Fig. 6. Boxplots showing the branch coverage against the Density of Decisions for
GA in –100%CP.
of decisions are more difficult to test because a lower coverage is
obtained.

After analyzing the LOCE measure, we supposed that if the
influence of the LOC were removed by dividing LOCE by LOC, it
could be obtained a measure with a high influence of the nested le-
vel (DLOCE) (recall that the LOCE measure weighs those nested
statements). As the nesting degree is highly correlated with the
branch coverage, the DLOCE would have high correlation too. After
doing the correlation test, our expectations were true, as one can
see in Table 7. These results are similar to the results obtained with
the nesting degree. In the case of the benchmark –100%CP, DLOCE
has more influence than N in general. In Fig. 7, we can see that the
coverage clearly increases as the DLOCE decreases with the excep-
tion of the programs with DLOCE between 7 and 8.

Let us analyze the nesting degree. In Table 8, we summarize the
obtained coverage in programs with different nesting degree in the
two benchmarks of programs. If the nesting degree is increased,
the branch coverage decreases and vice versa. It is clear that there
is an inverse correlation among these variables. These correlation
values are the highest ones obtained in the study of the different
static measures, so we can say that the nesting degree is the fea-
ture with the highest influence on the coverage that evolutionary
and random testing techniques can achieve. Nested branches pose
a great challenge for the search. The high correlation value of the
nesting degree supports that assertion.

Finally, we analyze the BCE measure, the new measure pro-
posed to estimate the difficulty to generate an adequate test suite.
In the 100%CP benchmark the correlation between this new mea-
sure and the coverage was 0.510 for ES, 0.375 for GA and 0.534
for RND, as we can see in Table 7. The obtained correlation coeffi-
cients when an RND generator is used are higher because the Mar-
kov model is inspired on it. In addition, in the –100%CP the
correlations are even higher: 0.714 for ES, 0.698 for GA and 0.732
for RND. This promising measure is more correlated with the cov-
erage (specially in the RND generator) than the nesting degree and
the other static measures. This suggests that it is the best static
complexity measure for measuring the difficulty of testing a pro-
gram by an automatic test data generator.

In Fig. 8 we show the obtained average branch coverage with the
random test data generator against the BCE measure. The trend is
clear: the lower the value of Branch Coverage Expectation, the low-
er the coverage. We have opened a way to estimate the difficulty to
test a program that is better than using the existing complexity
measures or other known static measures like the nesting degree.
Fig. 7. Boxplots showing the branch coverage against the DLOCE for GA in
–100%CP.



Table 8
Relationship between the nesting degree and the average coverage for all the algorithms. The standard deviation is shown in subscript. We highlight the highest values of branch
coverage for each algorithm and benchmark.

Nesting degree 100%CP –100%CP

ES GA RND ES GA RND

1 96.304.83 96.675.78 86.1310.81 82.328.16 82.517.89 81.367.97

2 92.287.66 95.337.11 79.8713.06 73.4311.70 73.9211.58 71.8611.66

3 83.9212.06 92.6810.28 73.4613.99 69.8515.35 70.3315.46 68.2015.23

4 81.4414.32 85.4113.96 68.6716.03 62.5517.93 62.3718.07 59.8317.82

5 – – – 53.8121.09 54.4821.57 51.8320.80

6 – – – 50.3221.14 50.7821.90 46.3320.93

7 – – – 44.3120.57 45.3320.77 42.7719.68

q �0.543 �0.381 �0.434 �0.563 �0.554 �0.589

The italicized values are the most correlated value per row.

10

20

30

40

50

60

70

80

90

100

Br
an

ch
 C

ov
er

ag
e

Random Generator
Theoretical Prediction

J. Ferrer et al. / Information and Software Technology 55 (2013) 2125–2139 2135
5.3. Another use of the Branch Coverage Expectation

As we detailed in Section 3 for each branch (BBi,BBj) the ex-
pected number of test cases required to traverse it is 1/E[BBi,BBj].
Then, given a number of test cases x, we can compute the number
of branches that would be theoretically traversed if the tester
execute x random test cases, according to this equation:

f ðxÞ ¼ ði; jÞ 1
E½BBi;BBj�

< x
����

� �����
����: ð20Þ

Thanks to this estimation, we propose a theoretical prediction
about the behavior of an automatic test data generator based on
random testing.

In Fig. 9 we show a plot for a particular program with the ex-
pected theoretical behavior together with the experimental data
obtained using the average branch coverage of the 30 independent
executions of an RND generator for that program. The features of
this test program are shown in Table 9. The resulting curves show
that our theoretical prediction and the experimental data are very
similar. The theoretical prediction is more optimistic because it
does not take into account data dependencies. At the first steps
of the algorithm, the experimental behavior is better than the the-
oretical prediction, but in the region of high coverage (close to
90%), the behavior of the RND test case generator is worse than ex-
pected. One explanation for this behavior could be the presence of
data dependencies in the program, which is not considered in the
theoretical approach in order to keep it simple.

This new proposal is useful to decide which is the best way of
generating a test suite for a piece of work. It could be useful to
Fig. 8. Average branch coverage of RND against the BCE measure.
decide the parameters of an evolutionary test data generator prior
to its execution, for example, the stopping condition.

5.4. Validation on real programs

In this section we want to make some validation of our pro-
posed measure on real programs. We study 10 real programs ex-
tracted from the literature and with characteristics similar to the
artificial programs used in the previous sections. The reader must
take into account that the number of programs used in the previ-
ous sections gives us the chance to average among 2600 programs
and extract statistically more reliable results. Despite the fact that
0 5 10 15 20 25 30
0

Number of Test Cases

Fig. 9. Coverage against the number of test cases of the random generator and the
theoretical model.

Table 9
Static measures for a representative program.

Features Value

Nesting 1
Atomic conditions 4
Total decisions 26
Equalities 3
Inequalities 8
McCabe 62
Halstead difficulty 32.53
LOCE 107
Density of decisions 0.37
Density of LOCE 1.51



2136 J. Ferrer et al. / Information and Software Technology 55 (2013) 2125–2139
in this section we only analyze the proposed testing measure over
10 programs, most of the conclusions are similar to the ones we
have obtained with the synthetic programs.

In Fig. 10 we show the average coverage obtained with the GA
against the BCE. Once again we can see that the higher the Branch
Coverage Expectation the higher the coverage. Relying on this fig-
ure we can state that there is a strong correlation between the ob-
tained coverage and the BCE. Besides showing the figure, we have
computed the Spearman’s correlation coefficient. The coefficients
are 0.770 and 0.758 for GA and RND, respectively. These values
of correlation are even higher than the values obtained with the
synthetic programs. Thanks to the experiments on real programs
we can state that the proposed measure (BCE) is useful in order
to measure the difficulty to automatically generate an adequate
test suite.

When we have analyzed the behavior of the ES algorithm, we
obtained that the correlation does not exist (�0.013). We can try
to justify this unexpected result because the ES has problems when
it deals with a few complex branches. This algorithm achieves high
coverage in most programs, but in a few, it obtains less coverage
than expected. It is not able to cover some complex branches. This
statement is supported by the value of correlation between the cov-
erage obtained with ES and the estimation of test cases needed
introduced in the previous section. They are correlated with a value
of �0.582. This means that the most complex branch to cover in a
program has high influence in the computation of the coverage.
6. Threats to validity

In this section we are going to analyze all threats that might
have an impact on the validity of the results. Our model is built
with the aim of the simplicity. We think that the simplicity is nec-
essary to generate an understandable and useful model, for this
reason there are some threats that should be evaluated in order
to analyze how they affect the theoretical model.

Data dependencies pose a great challenge for the exact tech-
niques because the analysis of the code can be extremely complex.
When a later condition depends on a previous one, there exists a
data dependency among the variables that are part of these condi-
tions. Thus, to satisfy a concrete condition could be necessary to
traverse several previous branches. This prerequisite is not taken
into account in our model. For that reason, the results of our theo-
retical model are not exact and might be optimistic, specially when
nested complex branches occur in the code.
Fig. 10. Average branch coverage of GA against the Branch Coverage Expectation
for the real programs.
In this study we have applied three different test data genera-
tors, two based on evolutionary techniques (ES, GA) and one based
on random testing (RND) for experimental validation. Although we
cannot ensure that three algorithms could describe the behavior of
all automatic test data generators, at least we have made a fair
comparison with different metaheuristic algorithms (GA and ES)
and simple techniques such as RND as a sanity check. Nevertheless,
our measure seems to predict better the effort required by the ran-
dom algorithm, which is still used as core of test data generators.
Besides that, we have used an automatic generated benchmark of
programs which could introduce bias in the experiments (as all
generated programs), but we have tried to minimize its impact
by generating programs with different characteristics.

Third, in our model we compute the transition probabilities
according to the general probability theory, but in the base case
of recursion, when a value of probability must be given to single
atomic conditions we set arbitrary values. In this case, we set 1/2
probabilities in all the cases except when the logical operator is
equal or inequal. Despite that, in our opinion half probability is a
good value, it would be necessary a calculation of this probability
for each condition because this value is not constant. This lack of
accuracy is the prize we pay to maintain the model simple. In addi-
tion, setting values has another disadvantage, if there is a condition
that can never be covered, our model would give a probability
greater than 0. For example, if there is a condition like (x2 < 0),
our model will establish a probability 1/2 of being traversed but
it will never be covered. In order to alleviate this problem we
should analyze each single condition to take into account uncover-
able branches in our model.

After describing the significant weaknesses of our model, we
think that solving some of these disadvantages require a sophisti-
cation of the model. We plan to analyze whether it is worthwhile
to make the model more complex. Nowadays, we think that it is
preferable to maintain the simplicity of the model and avoid the
complexity of analyzing the code repeatedly since this could be
very slow in large programs.
7. Conclusions and future work

In this paper we dealt with the testing complexity from an ori-
ginal point of view: a program is more complex if it is more diffi-
cult to be automatically tested. Therefore, we defined the
‘‘Branch Coverage Expectation’’ in order to provide some knowl-
edge about the difficulty of testing programs. The foundation of
this measure is based on a Markov model of the program. The Mar-
kov model provides a theoretical background. The analysis of this
measure indicates that it is more correlated with branch coverage
than the other studied static measures. This means that this is a
good way of estimating the difficulty of testing a program. We
think, supported by the results, that this measure is useful for pre-
dicting the behavior of an automatic test case generator.

The Markov model of the program can also be used to provide
an estimation of the number of test cases needed to cover a con-
crete percentage of the program. We have compared our theoreti-
cal prediction with an average of real executions of a test case
generator. The results show that our prediction is very similar to
the evolution of a real execution of the test case generator. This
theoretical prediction could be very useful to set some parameters
of the test case generator prior to its execution, for example, the
stopping condition. In conclusion, this model can help to predict
the evolution of the testing phase, which consequently can save
time and cost of the entire project.

In this study, we also analyzed the static features and the most
common complexity measures in Software Engineering. This anal-
ysis was performed in two automatically generated benchmarks of



Table A.10
The correlation coefficients among all the measures analyzed in the benchmark 100%CP.

HD MC LOCE N DD DLOCE BCE LOC SLOC TNDj TNCj TNE TNI TND CpD HL HV HVL HLV HE HT HB ES GA RND

HD – 0.796 0.786 �0.108 0.052 �0.035 0.285 0.932 0.853 0.742 0.731 0.644 0.639 0.799 0.454 0.870 0.842 0.864 1.0 0.920 0.920 0.864 0.070 �0.101 0.077
MC 0.796 – 0.965 0.266 0.519 0.408 0.025 0.805 0.962 0.925 0.934 0.829 0.811 0.985 0.524 0.976 0.969 0.977 �0.796 0.954 0.954 0.977 �0.150 �0.226 �0.074
LOCE 0.786 0.965 – 0.344 0.515 0.474 �0.038 0.796 0.974 0.884 0.882 0.822 0.789 0.976 0.501 0.945 0.938 0.945 �0.786 0.921 0.921 0.945 �0.186 �0.251 �0.133
N �0.108 0.266 0.344 – 0.765 0.877 �0.540 �0.207 0.180 0.235 0.240 0.311 0.234 0.276 0.136 0.138 0.127 0.139 0.108 0.089 0.089 0.139 �0.543 �0.381 �0.434
DD 0.052 0.519 0.515 0.765 – 0.912 �0.377 �0.043 0.405 0.449 0.489 0.485 0.437 0.538 0.283 0.368 0.367 0.372 �0.052 0.302 0.302 0.372 �0.439 �0.304 �0.311
DLOCE �0.035 0.408 0.474 0.877 0.912 – �0.485 �0.132 0.336 0.352 0.380 0.410 0.353 0.418 0.217 0.270 0.258 0.271 0.035 0.208 0.208 0.271 �0.504 �0.345 �0.397
BCE 0.285 0.025 �0.038 �0.540 �0.377 �0.485 – 0.307 0.081 0.065 0.008 �0.124 0.009 0.017 0.078 0.121 0.129 0.120 �0.285 0.159 0.159 0.120 0.510 0.375 0.534

LOC 0.932 0.805 0.796 �0.207 �0.043 �0.132 0.307 – 0.879 0.753 0.730 0.634 0.646 0.810 0.419 0.891 0.892 0.890 �0.932 0.910 0.910 0.890 0.136 �0.053 0.120
SLOC 0.853 0.962 0.974 0.180 0.405 0.336 0.081 0.879 – 0.884 0.878 0.794 0.778 0.973 0.492 0.975 0.970 0.975 �0.853 0.960 0.960 0.975 �0.091 �0.194 �0.050
TNDj 0.742 0.925 0.884 0.235 0.449 0.352 0.065 0.753 0.884 – 0.773 0.813 0.719 0.897 0.515 0.919 0.908 0.919 �0.742 0.900 0.900 0.919 �0.119 �0.175 �0.036
TNCj 0.731 0.934 0.882 0.240 0.489 0.380 0.008 0.730 0.878 0.773 – 0.734 0.806 0.905 0.497 0.913 0.901 0.913 �0.731 0.895 0.895 0.913 �0.158 �0.235 �0.072
TNE 0.644 0.829 0.822 0.311 0.485 0.410 �0.124 0.634 0.794 0.813 0.734 – 0.618 0.822 0.435 0.798 0.785 0.797 �0.644 0.779 0.779 0.797 �0.272 �0.279 �0.207
TNI 0.639 0.811 0.789 0.234 0.437 0.353 0.009 0.646 0.778 0.719 0.806 0.618 – 0.799 0.439 0.794 0.791 0.795 �0.639 0.774 0.774 0.795 �0.121 �0.201 �0.095
TND 0.799 0.985 0.976 0.276 0.538 0.418 0.017 0.810 0.973 0.897 0.905 0.822 0.799 – 0.503 0.961 0.959 0.962 �0.799 0.935 0.935 0.962 �0.147 �0.226 �0.082
CpD 0.454 0.524 0.501 0.136 0.283 0.217 0.078 0.419 0.492 0.515 0.497 0.435 0.439 0.503 – 0.524 0.518 0.523 �0.454 0.514 0.514 0.523 �0.089 �0.132 0.035

HL 0.870 0.976 0.945 0.138 0.368 0.270 0.121 0.891 0.975 0.919 0.913 0.798 0.794 0.961 0.524 – 0.991 1.0 �0.870 0.989 0.989 1.0 �0.071 �0.180 �0.012
HV 0.842 0.969 0.938 0.127 0.367 0.258 0.129 0.892 0.970 0.908 0.901 0.785 0.791 0.959 0.518 0.991 – 0.994 �0.842 0.971 0.971 0.994 �0.061 �0.172 �0.003
HVL 0.864 0.977 0.945 0.139 0.372 0.271 0.120 0.890 0.975 0.919 0.913 0.797 0.795 0.962 0.523 1.0 0.994 – �0.864 0.987 0.987 1.0 �0.072 �0.181 �0.011
HLV �1.0 �0.796 �0.786 0.108 �0.052 0.035 �0.285 �0.932 �0.853 �0.742 �0.731 �0.644 �0.639 �0.799 �0.454 �0.870 �0.842 �0.864 – �0.920 �0.920 �0.864 �0.070 0.101 �0.077
HE 0.920 0.954 0.921 0.089 0.302 0.208 0.159 0.910 0.960 0.900 0.895 0.779 0.774 0.935 0.514 0.989 0.971 0.987 �0.920 – 1.0 0.987 �0.046 �0.168 0.006
HT 0.920 0.954 0.921 0.089 0.302 0.208 0.159 0.910 0.960 0.900 0.895 0.779 0.774 0.935 0.514 0.989 0.971 0.987 �0.920 1.0 – 0.987 �0.046 �0.168 0.006
HB 0.864 0.977 0.945 0.139 0.372 0.271 0.120 0.890 0.975 0.919 0.913 0.797 0.795 0.962 0.523 1.0 0.994 1.0 �0.864 0.987 0.987 – �0.072 �0.181 �0.011

ES 0.070 �0.150 �0.186 �0.543 �0.439 �0.504 0.510 0.136 �0.091 �0.119 �0.158 �0.272 �0.121 �0.147 �0.089 �0.071 �0.061 �0.072 �0.070 �0.046 �0.046 �0.072 – 0.365 0.445
GA �0.101 �0.226 �0.251 �0.381 �0.304 �0.345 0.375 �0.053 �0.194 �0.175 �0.235 �0.279 �0.201 �0.226 �0.132 �0.180 �0.172 �0.181 0.101 �0.168 �0.168 �0.181 0.365 – 0.403
RND 0.077 �0.074 �0.133 �0.434 �0.311 �0.397 0.534 0.120 �0.050 �0.036 �0.072 �0.207 �0.095 �0.082 0.035 �0.012 �0.003 �0.011 �0.077 0.006 0.006 �0.011 0.445 0.403 –

J.Ferrer
et

al./Inform
ation

and
Softw

are
Technology

55
(2013)

2125–
2139

2137



Table A.11
The correlation coefficients among all the measures analyzed in the benchmark –100%CP.

HD MC LOCE N DD DLOCE BCE LOC SLOC TNDj TNCj TNE TNI TND CpD HL HV HVL HLV HE HT HB ES GA RND

HD – 0.698 0.359 �0.062 0.023 0.014 0.051 0.664 0.648 0.653 0.651 0.557 0.569 0.463 0.441 0.764 0.576 0.747 �1.0 0.872 0.872 0.747 0.069 0.067 0.079
MC 0.698 – 0.571 0.257 0.432 0.351 �0.142 0.472 0.667 0.936 0.937 0.803 0.827 0.718 0.671 0.782 0.762 0.786 �0.698 0.803 0.803 0.786 �0.177 �0.168 �0.173
LOCE 0.359 0.571 – 0.692 0.590 0.833 �0.461 0.414 0.717 0.435 0.432 0.479 0.485 0.814 0.086 0.564 0.503 0.560 �0.359 0.524 0.524 0.560 �0.461 �0.452 �0.476
N �0.062 0.257 0.692 – 0.708 0.870 �0.575 �0.160 0.190 0.163 0.161 0.229 0.220 0.502 �0.031 0.020 0.009 0.019 0.062 �0.007 �0.007 0.019 �0.563 �0.554 �0.589
DD 0.023 0.432 0.590 0.708 – 0.774 �0.426 �0.178 0.280 0.306 0.304 0.385 0.372 0.723 0.026 0.089 0.056 0.087 �0.023 0.070 0.070 0.087 �0.476 �0.473 �0.497
DLOCE 0.014 0.351 0.833 0.870 0.774 – �0.556 �0.113 0.284 0.247 0.243 0.308 0.291 0.593 0.013 0.096 0.076 0.095 �0.014 0.073 0.073 0.095 �0.577 �0.564 �0.602
BCE 0.051 �0.142 �0.461 �0.575 �0.426 �0.556 – 0.075 �0.143 �0.078 �0.079 �0.200 �0.138 �0.318 0.080 �0.021 �0.006 �0.020 �0.051 0.001 0.001 �0.020 0.714 0.698 0.732

LOC 0.664 0.472 0.414 �0.160 �0.178 �0.113 0.075 – 0.857 0.398 0.397 0.386 0.406 0.494 0.144 0.906 0.821 0.901 �0.664 0.874 0.874 0.901 0.102 0.099 0.116
SLOC 0.648 0.667 0.717 0.190 0.280 0.284 �0.143 0.857 – 0.533 0.532 0.549 0.572 0.834 0.152 0.916 0.813 0.910 �0.648 0.875 0.875 0.910 �0.137 �0.137 �0.137
TNDj 0.653 0.936 0.435 0.163 0.306 0.247 �0.078 0.398 0.533 – 0.849 0.753 0.781 0.555 0.747 0.702 0.697 0.707 �0.653 0.731 0.731 0.707 �0.110 �0.101 �0.102
TNCj 0.651 0.937 0.432 0.161 0.304 0.243 �0.079 0.397 0.532 0.849 – 0.753 0.771 0.551 0.746 0.702 0.697 0.707 �0.651 0.731 0.731 0.707 �0.116 �0.107 �0.111
TNE 0.557 0.803 0.479 0.229 0.385 0.308 �0.200 0.386 0.549 0.753 0.753 – 0.623 0.600 0.544 0.633 0.619 0.636 �0.557 0.646 0.646 0.636 �0.278 �0.270 �0.270
TNI 0.569 0.827 0.485 0.220 0.372 0.291 �0.138 0.406 0.572 0.781 0.771 0.623 – 0.619 0.559 0.658 0.645 0.662 �0.569 0.671 0.671 0.662 �0.207 �0.198 �0.204
TND 0.463 0.718 0.814 0.502 0.723 0.593 �0.318 0.494 0.834 0.555 0.551 0.600 0.619 – 0.132 0.688 0.605 0.683 �0.463 0.648 0.648 0.683 �0.338 �0.336 �0.348
CpD 0.441 0.671 0.086 �0.031 0.026 0.013 0.080 0.144 0.152 0.747 0.746 0.544 0.559 0.132 – 0.394 0.436 0.402 �0.441 0.437 0.437 0.402 0.026 0.026 0.031

HL 0.764 0.782 0.564 0.020 0.089 0.096 �0.021 0.906 0.916 0.702 0.702 0.633 0.658 0.688 0.394 – 0.932 0.999 �0.764 0.980 0.980 0.999 �0.021 �0.018 �0.010
HV 0.576 0.762 0.503 0.009 0.056 0.076 �0.006 0.821 0.813 0.697 0.697 0.619 0.645 0.605 0.436 0.932 – 0.946 �0.576 0.874 0.874 0.946 �0.040 �0.030 �0.022
HVL 0.747 0.786 0.560 0.019 0.087 0.095 �0.020 0.901 0.910 0.707 0.707 0.636 0.662 0.683 0.402 0.999 0.946 – �0.747 0.974 0.974 1.0 �0.023 �0.020 �0.011
HLV �1.0 �0.698 �0.359 0.062 �0.023 �0.014 �0.051 �0.664 �0.648 �0.653 �0.651 �0.557 �0.569 �0.463 �0.441 �0.764 �0.576 �0.747 – �0.872 �0.872 �0.747 �0.069 �0.067 �0.079
HE 0.872 0.803 0.524 �0.007 0.070 0.073 0.001 0.874 0.875 0.731 0.731 0.646 0.671 0.648 0.437 0.980 0.874 0.974 �0.872 – 1.0 0.974 0.004 0.005 0.016
HT 0.872 0.803 0.524 �0.007 0.070 0.073 0.001 0.874 0.875 0.731 0.731 0.646 0.671 0.648 0.437 0.980 0.874 0.974 �0.872 1.0 – 0.974 0.004 0.005 0.016
HB 0.747 0.786 0.560 0.019 0.087 0.095 �0.020 0.901 0.910 0.707 0.707 0.636 0.662 0.683 0.402 0.999 0.946 1.0 �0.747 0.974 0.974 1.0 �0.023 �0.020 �0.011

ES 0.069 �0.177 �0.461 �0.563 �0.476 �0.577 0.714 0.102 �0.137 �0.110 �0.116 �0.278 �0.207 �0.338 0.026 �0.021 �0.040 �0.023 �0.069 0.004 0.004 �0.023 – 0.954 0.940
GA 0.067 �0.168 �0.452 �0.554 �0.473 �0.564 0.698 0.099 �0.137 �0.101 �0.107 �0.270 �0.198 �0.336 0.026 �0.018 �0.030 �0.020 �0.067 0.005 0.005 �0.020 0.954 – 0.950
RND 0.079 �0.173 �0.476 �0.589 �0.497 �0.602 0.732 0.116 �0.137 �0.102 �0.111 �0.270 �0.204 �0.348 0.031 �0.010 �0.022 �0.011 �0.079 0.016 0.016 �0.011 0.940 0.950 –

2138
J.Ferrer

et
al./Inform

ation
and

Softw
are

Technology
55

(2013)
2125–

2139



J. Ferrer et al. / Information and Software Technology 55 (2013) 2125–2139 2139
programs. We studied the correlations among static measures of a
program and we determined which of them can be useful to esti-
mate the complexity of a program. At the end, the studied com-
plexity measures like McCabe’s and Halstead’s seemed to be
useless for this task. Instead, the nesting degree, the density of
decisions and the density of LOCE were the static measures more
correlated with branch coverage, although none of them is so cor-
related as the ‘‘Branch Coverage Expectation’’.

As future work we want to improve our model without losing
its simplicity. We plan to advance in the knowledge of the features
of a program that occurs in a condition. The computation of the
probabilities associated to a concrete decision is a great challenge
to improve our measure. In addition, we will take into account the
data dependencies in the probabilities computed for the Markov
model. This fact will provide more precision in the transition prob-
abilities. Besides that, we plan to consider the amount of resources
needed to execute different test cases, in particular when loops are
involved in the execution of a test case. Finally, we would like to
apply our complexity measure to real-world software and compare
the results with the real difficulty of testing the program by an
expert.

Acknowledgements

This work has been partially funded by the Spanish Ministry of
Science and Innovation and FEDER under contract TIN2011-28194
(the roadME project).

Appendix A. Tables

In this appendix we show the tables of correlation coefficients
among all the measures analyzed in both benchmarks of programs,
100%CP and –100%CP. See Tables A.10 and A.11.

References

[1] S. Ali, L.C. Briand, H. Hemmati, R.K. Panesar-Walawege, A systematic review of
the application and empirical investigation of search-based test case
generation, IEEE Transactions on Software Engineering 36 (6) (2010) 742–762.

[2] S. Anand, E. Burke, T.Y. Chen, J. Clark, M.B. Cohen, W. Grieskamp, M. Harman,
M.J. Harrold, P. McMinn, An orchestrated survey on automated software test
case generation, Journal of Systems and Software (2013).

[3] A. Arcuri, Evolutionary repair of faulty software, Applied Soft Computing 11
(2011) 3494–3514.

[4] T. Bäck, D.B. Fogel, Z. Michalewicz, Handbook of Evolutionary Computation,
Oxford University Press, New York, NY, 1997.

[5] V. Basili, Quantitative Software Complexity Models: A Panel Summary. Tutorial
on Models and Methods for Software Management and Engineering, IEEE
Computer Society Press, 1980.

[6] V. Basili, B. Perricone, Software errors and complexity: an empirical
investigation, ACM Communication 27 (1984) 42–52.

[7] A. Bertolino, M. Marré, How many paths are needed for branch testing?,
Journal of System Software 35 (2) (1996) 95–106

[8] B. Boehm, C. Abts, A.W. Brown, S. Chulani, B.K. Clark, E. Horowitz, R. Madachy,
D.J. Reifer, B. Steece, Software Cost Estimation with COCOMO II, Prentice-Hall,
2000.
[9] B. Curtis, S.B. Sheppard, P. Milliman, Third Time Charm: Stronger Prediction of
Programmer Performance by Software Complexity Metrics, IEEE Press,
Piscataway, NJ, USA, 1979.

[10] T. DeMarco, Controlling Software Projects: Management Measurement and
Estimates, Prentice Hall PTR, Upper Saddle River, NJ, USA, 1986.

[11] M. Dixon, An Objective Measure of Code Quality, Technical Report, vol. 1, 2008.
[12] J. Ferrer, F. Chicano, E. Alba, Evolutionary algorithms for the multi-objective

test data generation problem, Software Practice and Experience 42 (11) (2012)
1331–1362.

[13] J. Ferrer, J.F. Chicano, E. Alba, Correlation between static measures and code
coverage in evolutionary test data generation, International Journal of
Software Engineering and Its Applications 4 (4) (2010) 57–79.

[14] M.H. Halstead, Elements of Software Science, Elsevier, North-Holland, 1977.
[15] A.E. Hassan, Predicting faults using the complexity of code changes, in: ICSE

’09. Proceedings of the 31st International Conference on Software Engineering,
IEEE Computer Society, Washington, DC, USA, 2009, pp. 78–88.

[16] T. Honglei, S. Wei, Z. Yanan, The research on software metrics and software
complexity metrics, in: IFCSTA ’09. International Forum on Computer Science-
Technology and Applications, 2009, vol. 1, 2009, pp. 131–136.

[17] B. Jones, H.H. Sthamer, D. Eyres, Automatic structural testing using genetic
algorithms, Software Engineering Journal 11 (5) (1996) 299–306.

[18] T. Khoshgoftaar, J. Munson, Predicting software development errors using
software complexity metrics, IEEE Journal on Selected Areas in Communications
(1990).

[19] B. Kitchenham, S.L. Pfleeger, Z.C. Society, Towards a framework for software
measurement validation, IEEE Transactions on Software Engineering 21 (1995)
929–944.

[20] H. Kobayash, B.L. Mark, W. Turin, Probability, Random Processes, and
Statistical Analysis, Cambridge University Press, 2011.

[21] K. Lakhotia, M. Harman, H. Gross, Austin: an open source tool for search based
software testing of C programs, Information and Software Technology 55 (1)
(2013) 112–125.

[22] S.S.B. Lam, M.L.H.P. Raju, M. Uday Kiran, Ch. Swaraj, P.R. Srivastav, Ni. Procedia
Engineering 30 (2012) 191–200.

[23] N. Malevris, D. Yates, The collateral coverage of data flow criteria when branch
testing, Information and Software Technology 48 (8) (2006) 676–686.

[24] P.S. May, Test Data Generation: Two Evolutionary Approaches to Mutation
Testing, Ph.D. Thesis, Computing Laboratory, 2007.

[25] T.J.A. McCabe, complexity measure, IEEE Trans on Software Engineering 2 (4)
(1976) 308–320.

[26] S. Misra, A.K. Misra, Evaluation and comparison of cognitive complexity
measure, SIGSOFT Software Engineering Notes 32 (2) (2007) 1–5.

[27] G. Myers, T. Badgett, C. Sandler, The Art of Software Testing, John Wiley and
Sons, New York, 2011.

[28] A.F. Nogueira, Predicting Software Complexity by Means of Evolutionary
Testing, ASE’12, ACM, New York, NY, USA, 2012. p. 402–405.

[29] P. Piwarski, A nesting level complexity measure, SIGPLAN 17 (9) (1982) 44–50.
[30] I. Samoladas, G. Gousios, D. Spinellis, I. Stamelos, in: IFIP International

Federation for Information Processing Open Source Development,
Communities and Quality, vol. 275, Springer, 2008, pp. 237–248.

[31] C. Software, Source Monitor (2012).
[32] G. Tassey, The Economic Impacts of Inadequate Infrastructure for Software

Testing. Technical Report, NIST, 2002.
[33] W. Thomson, Mathematical and Physical Papers, Cambridge University Press,

1882.
[34] E. Weyuker, Evaluating software complexity measures, IEEE Transactions on

Software Engineering 14 (9) (1988) 1357–1365.
[35] S. Yoo, M. Harman, Regression testing minimization, selection and

prioritization: a survey, Software Testing, Verification and Reliability 22 (2)
(2012) 67–120.

[36] L. Yu, A. Mishra, Experience in predicting fault-prone software modules using
complexity metrics, Quality Technology and Quantitative Management 9 (4)
(2012) 421–433.

[37] Y. Zhou, B. Xu, H. Leung, On the ability of complexity metrics to predict fault-
prone classes in object-oriented systems, Journal of Systems and Software 83
(4) (2010) 600–674.

http://refhub.elsevier.com/S0950-5849(13)00153-5/h0005
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0005
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0005
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0010
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0010
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0010
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0015
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0015
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0020
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0020
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0020
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0025
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0025
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0025
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0025
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0030
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0030
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0035
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0035
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0040
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0040
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0040
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0040
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0045
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0045
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0045
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0045
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0050
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0050
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0050
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0055
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0055
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0055
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0060
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0060
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0060
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0065
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0065
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0070
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0070
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0070
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0070
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0075
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0075
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0080
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0080
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0080
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0085
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0085
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0085
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0090
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0090
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0090
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0095
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0095
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0095
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0100
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0100
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0105
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0105
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0110
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0110
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0115
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0115
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0115
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0120
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0120
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0120
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0125
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0130
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0135
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0135
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0135
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0140
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0140
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0145
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0145
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0145
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0150
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0150
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0150
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0155
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0155
http://refhub.elsevier.com/S0950-5849(13)00153-5/h0155

	Estimating software testing complexity
	1 Introduction
	2 Static measures
	3 New complexity measure: Branch Coverage Expectation
	3.1 Markov chain
	3.2 Definition of BCE
	3.3 Validation of the Branch Coverage Expectation

	4 Experimental benchmark
	4.1 Evolutionary test case generator
	4.2 Automatic program generator
	4.3 Benchmark of test programs
	4.3.1 Real programs


	5 Experimental results
	5.1 Analysis of the correlation between the static measures
	5.2 Correlation between coverage and static measures
	5.3 Another use of the Branch Coverage Expectation
	5.4 Validation on real programs

	6 Threats to validity
	7 Conclusions and future work
	Acknowledgements
	Appendix A Tables
	References


