
Evolutionary Algorithm for Prioritized Pairwise
Test Data Generation

Javier Ferrer
University of Malaga

Malaga, Spain
ferrer@lcc.uma.es

Peter Krüse
Berner & Mattner GmbH

Berlin, Germany
peter.kruse@berner-

mattner.com
Francisco Chicano
University of Málaga

Malaga, Spain
chicano@lcc.uma.es

Enrique Alba
University of Málaga

Malaga, Spain
eat@lcc.uma.es

ABSTRACT
Combinatorial Interaction Testing (CIT) is a technique used
to discover faults caused by parameter interactions in highly
configurable systems. These systems tend to be large and
exhaustive testing is generally impractical. Indeed, when
the resources are limited, prioritization of test cases is a
must. Important test cases are assigned a high priority and
should be executed earlier. On the one hand, the prior-
itization of test cases may reveal faults in early stages of
the testing phase. But, on the other hand the generation
of minimal test suites that fulfill the demanded coverage
criteria is an NP-hard problem. Therefore, search based ap-
proaches are required to find the (near) optimal test suites.
In this work we present a novel evolutionary algorithm to
deal with this problem. The experimental analysis com-
pares five techniques on a set of benchmarks. It reveals that
the evolutionary approach is clearly the best in our compar-
ison. The presented algorithm can be integrated into CTE
XL professional tool.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools; I.2.8 [Artificial Intelligence]: Problem Solv-
ing,Control Methods, and Search—Heuristic methods

General Terms
Algorithms, Experimentation, Verification

Keywords
Software Testing, Evolutionary Algorithm, Search Based Soft-
ware Engineering, Combinatorial Testing, Prioritization, Pair-
wise Coverage

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’12, July 7–11, 2012, Philadelphia, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1177-9/12/07 ...$10.00.

1. INTRODUCTION
Automatic software testing is one of the most studied top-

ics in the field of Search-Based Software Engineering (SBSE)
[13, 14]. From the very first work [16, 21] to nowadays, many
approaches have been proposed for solving the automatic
test data generation problem. This great effort in building
computer aided software testing tools is motivated by the
cost and importance of the testing phase in the software
development cycle.

Frequently, software testers are faced with situations in
which there is not enough time for testing, since the software
under test must be finished on time for the release date not
to be delayed. Hence, software testers have to deal with lim-
ited resources, unfinished systems, and not much time to test
the software. Although a tester aims at executing as many
test cases as possible, often a test case selection has to be
done. The prioritization of test cases is a re-ordering of tests
to find faults in early stages. But, if the time run-out, this
technique also allows the tester to specify the desired level
of coverage and failure-detection. The result of the prioriti-
zation is then a schedule of test cases so that those with the
highest priority, according to some criterion, are executed
earlier. Criteria can be error rate, occurrence probabilities
or risk values.

Combinatorial Interaction Testing (CIT) is a black box
sampling technique to complement traditional testing meth-
ods. CIT provides a practical way to detect failures caused
by parameter interactions with a good trade-off between cost
and efficiency. It samples the large combination space us-
ing a smaller test suite to cover certain key parameter value
combinations. In recent years, several works [5, 25] have
explored the effectiveness of the prioritization with combi-
natorial interaction coverage. Compared with other criteria,
prioritization with interaction coverage was found to provide
the fastest rate of fault detection. But, the generation of
minimal test suites that fulfill the demanded coverage crite-
ria is an NP-hard problem. Thus, search based approaches
are required to find the (near) optimal test suites.

Evolutionary algorithms (EAs) have been the most pop-
ular search-based algorithms for generating test cases [20].
In fact, the term evolutionary testing is used to refer to
this approach. In the paradigm of white box testing a lot
of research has been performed using EAs covering different

1213

aspects of the programs, like the presence of flags in con-
ditions [2], the coverage of loops [8], and the existence of
internal states [28]. In black box testing, some relevant top-
ics are the generation of test data from Z specifications [15],
and the conformance testing [22]. In this paper, we present
a search-based approach for test suite optimization using the
classification tree method. To the best of our knowledge it
is the very first time that an EA is used to deal with the
prioritized combinatorial interaction testing problem.
This study aimed to evaluate the performance of meta-

heuristic techniques for dealing with this problem. In order
to achieve this objective we perform a comparison among
five algorithms on a set of benchmarks found in the liter-
ature. For most benchmark problems the evolutionary ap-
proach will be shown to be the best compared to the other
greedy approaches.
The rest of the paper is organized as follows. In the next

section we define the combinatorial interaction testing, the
classification tree method and the classification tree editor.
Then, in Section 3 we introduce the prioritized pairwise test
data generation problem. Next, in Section 4 we present five
different approaches to solve this problem. Specially, we de-
scribe in detail our main contribution, the prioritized genetic
solver. After that, Section 5 is devoted to the experimental
results. We describe the selected benchmark in Section 5.1
and we analyze the obtained result in Section 5.2. Finally,
in Section 6, some conclusions and future work are outlined.

2. COMBINATORIAL INTERACTION
TESTING

Combinatorial Interaction Testing [7] is an effective test-
ing approach for detecting failures caused by certain com-
binations of components or input values. The tester identi-
fies the relevant test aspects and defines the corresponding
classes. These classes are also called parameters and their
elements are called values. We assume that the parameters
are disjoint sets. A test case is a set of n values, one for each
parameter.
CIT is used to determine the smallest possible subset of

tests that covers all combinations of values specified by a
coverage criterion with at least one test case. A coverage cri-
terion is defined by its strength t that determines the degree
of parameter interaction and assumes that all parameters
are considered.
The most common coverage criterion is 2-wise (or pair-

wise) testing, that is fulfilled if all possible pairs of values
are covered by at least one test case in the result test set.
A large number of CIT approaches have been presented in
the past. A good overview and classification of approaches
can be found in [11, 17], or more recently [23]. A good
survey that focuses on CIT with constraints is given in [6].
Nearly all existing works investigate pairwise combination
methods, but most of them can be extended to arbitrary t-
combinations. The only known approaches supporting pri-
oritized test case generation are the Deterministic Density
Algorithm (DDA) [3] and an algorithm based on Binary De-
cision Diagrams (BDD) [26].

2.1 Classification Tree Method
The Classification Tree Method [12] aims at systematic

and traceable test case identification for functional testing
over all test levels (for example, component test or system

test). It is based on the category partition method [24],
which divides a test domain into disjoint classes represent-
ing important aspects of the test object. Applying the clas-
sification tree method involves two steps; designing the clas-
sification tree and defining test cases.

Design of the classification tree: The classification
tree is based on the functional specification of the test object.
For each aspect of interest (called classification), the input
domain is divided into disjoint subsets (called classes). In
the classification tree method, classifications match param-
eters and classes match parameter values. Figure 1 shows a
classification tree for a database management system. Three
aspects of interest (Access Method, Operation, and Privi-
leges) have been identified for the system under test. The
classifications are partitioned into classes which represent
the partitioning of the concrete input values. In our ex-
ample the refinement aspect JavaScript is identified for the
class Browser and it is divided further into two classes Yes
and No. All classes have been assigned values of importance.
As the figure shows, Edit is the most probable Operation.
Create and Delete are the subsequent values in descending
order of importance. The weights of all classes at the same
level in one classification sum 1 in the model. The class
Browser has an occurrence rate of 0.7 in Access Methods. If
the Access Method is a Browser, JavaScript enabled (Yes)
has an occurrence rate of 0.9 and No has an occurrence rate
of 0.1. Refinements are interpreted as conditional proba-
bility in the occurrence model. The resulting occurrence
probability for a Browser with JavaScript enabled (Yes) is
0.63 (= 0.7 ∗ 0.9), for No it is 0.07, accordingly.

Figure 1: Test Object Database Management System

Definition of test cases: Having composed the classi-
fication tree, test cases can be defined by combining classes
from different classifications. Since classifications only con-
tain disjoint values, test cases cannot contain several values
of one classification. The length of the test cases could vary
if a class is refined into several classifications.

2.2 Classification Tree Editor
The Classification Tree Editor (CTE XL) is a software

tool supporting the classification tree method [19]. It in-
corporates CIT elements. Current versions of the CTE XL
support automated test case generation and user-defined de-
pendency rules. Current test case generation offers four dif-
ferent coverage modes:

• Minimal combination creates a test suite that uses ev-
ery class from each classification at least once in a test
case.

• Pairwise combination creates a test suite that uses ev-
ery class pair from disjunctive classifications at least
once in a test case.

1214

• Threewise combination (“triple-wise”) creates a test
suite that uses every triple of classes from disjunctive
classifications at least once in a test case.

• Complete combination creates a test suite that uses
every possible combination of classes from disjunctive
classification in a test case.

3. PRIORITIZED PAIRWISE TEST DATA
GENERATION

In this section we describe the Prioritized Pairwise Test
Data Generation problem. In order to define the problem
we first detail how the priorities are assigned to classification
tree elements and what is the coverage criterion used.

3.1 Prioritization
Priorities are assigned to the classification tree elements

in order to indicate the importance of the element. These
priorities are also called weights. The higher the weight, the
higher importance of the element. These weights can be
used to guide the test case generation in order to cover first
the most important values.
There exist different prioritization techniques. Elbaum et

al. provide good overviews of existing approaches [9, 10].
The following three models were selected to provide a basis
for prioritization:

• Prioritization based on a usage model [27] tries to re-
flect usage distribution of all classes in terms of usage
scenarios. Classes with a high occurrence have higher
weights than classes with a low occurrence.

• Prioritization based on an error model [9] aims to re-
flect distribution of error probabilities of all classes.
Classes with a high probability of revealing an error
have higher weights than classes with a low probabil-
ity.

• Prioritization based on a risk model [1] is similar to
prioritization based on an error model but also takes
error costs into account. Classes with a high risk have
higher weights than classes with a low risk.

Once we have assigned weights to each value (class), we
need to define weights for the pair of classes. This is done
by multiplying the weight of each class involved in the pair.
Following the previous example the pair weight for (Yes
(Javascript), Create) is 0.63 * 0.3 = 0.189

3.2 Coverage Criteria
We need to define a measure of the quality of a test suite

in order to decide which test suite is the best one. In white-
box testing the use of code coverage measures, like branch
coverage or sentence coverage, is common. We also use here
a coverage measure which is based on the weights of the class
pairs covered. The so called weight coverage is defined as:

WC =
sum of weights of covered class pairs

sum of weights of all coverable class pairs
(1)

The metric is relative, i.e. considers the fact that classes
may not be coverable because of dependencies.

3.3 Problem Formulation
Once we defined the concepts of weight and the coverage

criteria, we can define the problem. Let T denote the set

of all the possible test cases and let s ∈ T ∗ denote a finite
sequence of test cases from T where si is used to refer to the
i-th test case. Given m values of interest for the weight cov-
erage WC1, WC2, . . . , WCm, we define the functions f1(s),
f2(s), . . . , fm(s) in the following way: fi(s) is the length of
the minimum prefix of s with weight coverage greater than
or equal to WCi. That is, fi(s) gives the number of test
cases from the beginning of s we have to run in order to get
weight coverage WCi. The problem can be formulated as
finding the sequence of test cases s having minimum values
for all the fi(s) functions.

We can think in these problems as a Multi-objective prob-
lem. However, it is not the case the all the objectives have
the same importance. Finding a minimum number of test
cases for covering the lowest values of the weighted coverage
is usually more important than minimizing the number of
test cases for the highest values of WC. The reason is that
the software tester wants to cover fast the more important
class pairs.

4. SOLUTION APPROACHES
In this section we describe five different approaches used

to solve the prioritized pairwise test case generation prob-
lem. We first introduce in detail our evolutionary approach,
a genetic algorithm. To the best of our knowledge this is
the first time an evolutionary approach has ever been ap-
plied to the target problem. Then, we briefly describe two
deterministic algorithms that we have implemented for com-
parison purposes, the Prioritized Pairwise Combination al-
gorithm (PPC) and the Plain Pairwise Sorting (PPS). We
finally present the Deterministic Density Algorithm (DDA)
developed in [4] and an algorithm based on Binary Decision
Diagrams (BDD) introduced by Lee [18].

4.1 Prioritized Genetic Solver
The Prioritized Genetic Solver (GS) is a novel evolution-

ary approach that constructs an entire test suite taking into
account priorities in the generation. It is a constructive al-
gorithm that adds one new test case to the partial solution
in each iteration until all pairwise combinations are covered.
In each iteration the algorithm tries to find the test datum
that adds more coverage to the partial solution.

We show the main loop of our GA in Algorithm 1. At
the beginning the test suite is initialized with an empty list
(line 2). In each iteration of the external loop (lines 3-19)
the algorithm creates a random population of individuals
(line 5). Then, it enters in an inner loop that which ap-
plies the traditional steps of a generational evolutionary al-
gorithm (lines 7-17). That is, some individuals (solutions)
are selected from the population P (t), they are recombined,
mutated and evaluated and they are finally inserted in the
offspring population Q. In line 15 the old and the new pop-
ulations are used to build the population for the next gener-
ation P (t+ 1). The best individuals among P (t) and Q are
included in P (t + 1). The internal loop is executed until a
maximum number of evaluations is reached. Then, the best
individual (test datum) found is included in the test suite
(line 18) and the external loop starts again.

In this work we have used a one point crossover with prob-
ability 1 of recombining the two selected individuals. This
operator is able to put together good solution components
that are scattered in the small population used of 4 indi-
viduals. Regarding the mutation operator, it iterates over

1215

Algorithm 1 Pseudocode of GA.

1: proc Input:(GA) //Algorithm parameters in ‘GA’
2: TS ← ∅ // Initialize the test suite
3: while not Termination Condition() do
4: t=0
5: P(t) ← Create Population() // P = population
6: Q ← ∅ // Q = auxiliar population
7: while Evals < TotalEvals do
8: for i ← 1 to (GA.popSize) do
9: parents←Selection(P(t))
10: offspring←Recombination(GA.Pc,parents)
11: offspring←Mutation(GA.Pm,offspring)
12: Evaluate Fitness(offspring)
13: Insert(offspring,Q)
14: end for
15: P(t+1) := Replace (Q,P(t))
16: t= t + 1
17: end while //internal loop
18: Insert(best solution, TS)
19: end while //external loop
20: end proc

all the components in the solution vector changing its value
by a random one of the same classification with probability
0.05. The maximum number of evaluations used as stopping
criterion in the internal loop is 5, 000 (line 7) while the stop-
ping condition of the external loop is to achieve full pairwise
coverage (line 3).

4.1.1 Objective Function
Our algorithm aims at generating an entire test suite (to

cover all pairwise combinations). The algorithm constructs
the solution by generating the best test datum at a time
until all pairwise combinations are covered. The best test
datum is the one that most reduce the weighted value of the
set of remaining pairs to cover.
The computation of the fitness value for each solution is

done through the following process: The algorithm com-
putes the combined class pairs of the solution (test datum).
After that, it removes these pairs from the set of remaining
pairs. Finally, the fitness value of a solution is computed as
the sum of the weights of the remaining pairs. That is, the
objective value of a proposed test datum is the sum of the
weights of the class pairs that are not covered after adding
the test datum to the suite. This objective function must
be minimized in order to take first the test datum covering
the class pairs with higher weights. As the search progresses
the computational cost of computing the fitness function is
reduced, since less class pairs remain uncovered.

4.2 Prioritized Pairwise Combination
In this algorithm, the class pair with the highest weight

from the set of uncovered class pairs is chosen for the new
test case. We determine all candidate test cases contain-
ing this class pair and calculate the index values for these
candidates. This index value includes the weights and the
number of newly covered class pairs.
PPC then selects the test case with the highest assigned

index value. This way, we can guarantee that the n first test
cases cover the n more important class pairs. The generated
test suite may be slightly larger than the result of the plain
pairwise combination since weights are taken into account.
The generation process using PPC is deterministic: the same
test suite is generated for identical classification trees.

4.3 Plain Pairwise Sorting
This algorithm first applies a plain pairwise algorithm (the

one integrated in CTE XL professional tool), that computes
a sequence of test cases covering all the class pairs. Then it
sorts the test cases taking into account their absolute weight
at first. Then, it applies as many discriminatory reorderings
as test cases.

Note that this approach does not guarantee coverage of
any n most important class pairs by the n first test cases.
However, the generated test suite will have exactly the same
size as the plain pairwise combination, as the suite does not
grow by sorting. The generation process using sorting is de-
terministic, however its results differ from the PPC results.

4.4 Deterministic Density Algorithm
In the Deterministic Density Algorithm (DDA) one test

datum is constructed at a time and new test data are gen-
erated until all t-tuples are covered. Each classification is
assigned a class value one-at-a-time. A classification that
has been assigned a class value is referred to as fixed; one
that has not, as free. For each classification, the class value
that covers the largest density is selected. Then, a density
formula calculates the likelihood of covering future tuples.
To modify DDA to account for prioritization, the density
formula is modified. Instead of computing the ratio of un-
covered pairs to be covered, the amount of weight to be
covered is computed.

4.5 Binary Decision Diagrams Algorithm
Binary Decision Diagrams (BDD) are acyclic directed graphs

used to represent propositional logical formulas. In [26] the
authors introduced an approach based on the modeling of
the combinatorial interaction test problem as a single propo-
sitional logic formula. They constructed the formula such
that the set of satisfying interpretations of the formula cor-
responds to the set of valid test cases and such that a one-to-
one relation between a satisfying interpretation of the for-
mula and a valid test case of the CIT problem exists. The
formula is the conjunction of a subformula representing the
set of all test cases and a subformula representing the set of
constraints. They have used this formula in a greedy algo-
rithm, in the following BDD, to select test cases until the
desired coverage criterion is fulfilled.

5. EXPERIMENTS
This section is aimed at describing the experiments per-

formed on a benchmark of programs. First, we describe the
experimental benchmark and then we analyze the results of
the comparison among the algorithm presented in Section 4.

5.1 Experimental Benchmark
For a more detailed and systematic evaluation, we use the

set of benchmarks proposed in [4]. The scenarios S1 − S8
are given in Table 1. The number of classes of each scenario
are given in a shorthand notation, where for example S5
with 82726224 consists of 2 classifications with 8 classes, 2
classifications with 7 classes, 2 classifications with 6 classes,
and 4 classifications with 2 classes.

The given benchmark uses four different weight distribu-
tions applied to the eight scenarios. The distributions are:

• d1 (equal weights): All classes have the same weight

• d2 (50/50 split): Half of the weights for each classifi-
cation are set to 0.9 the other half to 0.1

1216

Table 2: Number of test cases needed for the GA, PPC, and PPS algorithms in eight scenarios and for four
distributions. When significant differences exist between the GS and other algorithm we add an asterisk.

Scenario Coverage d1 d2 d3 d4
GS PPC PPS GS PPC PPS GS PPC PPS GS PPC PPS

S1

25% 3 3 3 1 1 1 3 3 3 2 2 2
50% 5 5 5 1 1 2 5 5 5 3 3 3
66% 6.29 7* 6* 1 1 3* 6.29 7* 6* 5 5 5
75% 7.48 8* 7* 3 3 4* 7.35 8* 7* 6 6 5*
90% 9.3 9* 9* 6.29 7* 5* 9.18 9* 9* 8 8 7*
95% 9.93 10 9* 8 8 7* 9.88 10 9* 9 10* 8*
99% 10.42 10 9* 10.28 11* 8* 10.19 10 9* 11 11 9*

S2

25% 26 27* 27* 8.23 9* 12* 26 27* 27* 12 12 19*
50% 56.1 56 60* 19 18* 36* 56.11 56 60* 31 31 47*
66% 80.05 79* 89* 29 27* 60* 80.04 79* 89* 49.83 50 74*
75% 96,75 95* 110* 38.13 36* 79* 96.78 95* 110* 64.02 65* 95*
90% 134.48 132* 162* 89.69 87* 131* 134.48 132* 162* 102.33 104* 150*
95% 154.84 152* 190* 122.77 121* 163* 154.76 152* 190* 125.59 129* 181*
99% 182.94 180* 228* 169.9 169* 212* 182.93 180* 228* 163.14 169* 223*

S3

25% 3 3 3 1 1 2* 3 3 3 1 1 3*
50% 6 6 6 1 1 4* 6 6 6 3 3 5*
66% 8 8 8 1.76 1* 7* 8 8 8 5 5 8*
75% 9.02 9 10* 3.64 4* 8* 9.03 9 10* 7 7 10*
90% 14 15* 16* 8 9* 13* 14 15* 16* 12 12 15*
95% 17.9 20* 20* 11.84 12 16* 17.91 20* 20* 15 15 19*
99% 24.13 37* 26* 19 19 23* 24.07 37* 26* 21 21 26*

S4

25% 9.41 11* 10* 3 3 4* 5 4* 4* 7 6* 7
50% 21.02 24* 22* 7 8* 11* 9 8* 8* 15.09 15 18*
66% 31.95 36* 34* 11.62 12* 17* 13.03 12* 14* 23.12 23 28*
75% 39.67 45* 42* 15.46 16* 23* 17 16* 19* 29.09 29 36*
90% 59.12 64* 63* 32.7 36* 38* 30.84 30* 35* 45.02 46* 56*
95% 70.57 74* 74* 49.4 53* 51* 43.28 42* 46* 55.37 59* 67*
99% 88.24 86* 88 77.41 76* 77* 72.17 72 70* 75.76 82* 82*

S5

25% 8 8 7* 2.46 2* 3* 2 2 2 3 3 4*
50% 16.97 18* 17 5.46 6* 8* 4 4 4 8 8 10*
66% 27.09 28* 27 9.46 10* 15* 7 7 7 13.12 14* 17*
75% 34.65 35* 34* 12.52 13* 21* 9 9 10* 18.05 19* 24*
90% 50.04 50* 51* 26.89 28* 37* 14.01 15* 19* 32.13 33* 41*
95% 58 57* 59* 42.06 43* 46* 25.22 23* 25* 41.32 44* 50*
99% 69.5 66* 68* 60.86 61 62* 52.54 52* 54* 56.61 60* 65*

S6

25% 22 23* 22 7 7 9* 12 12 12 10.04 11* 14*
50% 45,98 52* 49* 16 17* 24* 25 26* 26* 25.98 27* 36*
66% 67.17 74* 74* 24.53 25* 39* 36 38* 41* 40.51 43* 57*
75% 82.48 89* 92* 31.33 31 53* 44.1 46* 53* 52.1 56* 73*
90% 117.65 123* 131* 71.71 73* 92* 81.15 83* 92* 84.32 90* 111*
95% 136.98 139* 149* 105.23 106* 114* 105.4 107* 120* 104.83 112* 131*
99% 158.19 159* 169* 146.44 148* 153* 146.43 149* 158* 139.87 148* 160*

S7

25% 2 2 2 1 1 2* 2 2 2 1 1 2*
50% 4 4 4 1 1 3* 3 3 4* 2 2 4*
66% 6 6 6 1 1 4* 5 5 5 4 4 6*
75% 7 7 8* 2 2 5* 6 6 7* 5 5 7*
90% 11 11 12* 6 6 9* 9 10* 10* 8.81 9 11*
95% 14 14 15* 8.06 9* 12* 12 13* 13* 11 11 14*
99% 20.99 20* 21 14.65 14* 18* 19 21* 19 16.99 17 21*

S8

25% 3 3 - 1 1 - 2.82 3 - 2 3* -
50% 8 8 - 3 3 - 5.64 6 - 5 6* -
66% 12 13* - 6 7* - 7.52 8 - 9 8* -
75% 16.38 18* - 9 12* - 9.39 9* - 14 9* -
90% 37.86 64* - 20.37 30* - 14.1 15 - 31.66 15* -
95% 52.97 92* - 35.06 56* - 17.71 19* - 46.62 19* -
99% 130.87 145* - 97.32 114* - 25.94 28* - 118.22 28* -
Times 22 12 7 26 11 3 19 14 5 24 8 4

• d3 ((1/vmax)2 split): All weights of classes for a clas-
sification are equal to (1/vmax)2, where vmax is the
number of classes associated with the classification

• d4 (random): Weights are randomly distributed.

5.2 Experimental Analysis
In this section we analyze the behaviour of the algorithms

with the aim of highlighting the technique that works better.
In a first subsection, we study our three algorithms, the
GS, the PPC and the PPS algorithm. In this subsection
we present an exhaustive comparison among our proposed

algorithms. In a second subsection, we compare our best
algorithm, the GS, with the other two algorithms: DDA
and BDD.

5.2.1 Comparison between our algorithms

In this comparison we are evaluating our three algorithms
(GS, PPC and PPS) in order to analyze their behaviour
for the computation of minimal test suites when we use
weight coverage as adequacy criterion. In general the GS
performs better than the PPC and the PPS algorithm in
most cases, nevertheless we want to highlight the weaknesses
and strengths of each algorithm. The detailed results for all

1217

Table 1: Scenarios and number of factors.
Scenarios #Classes

S1 34

S2 1020

S3 3100

S4 1019181716151413121

S5 82726224

S6 1511055141

S7 350250

S8 2021023100

the scenarios, distributions, and weight coverage are given in
Table 2. We should take into account that the observations
of the number of test cases needed to achieve the different
values of coverage are taken in the same execution of the
algorithm. We execute the GS 100 times for a particular
scenario-distribution combination, then we have done 3, 200
executions of the GS algorithm. In order to validate the
experimental results we compared the 100 samples of the
GS with the values of the deterministic algorithms using the
Wilcoxon rank-sum test with 95% of statistical confidence.
In Table 2 we marked with an asterisk (∗) the values that
are statistically different with respect to the GS’s value.
Let us first analyze the results obtained by distribution.

If all the weights of the interactions are the same (distribu-
tion d1), the GS performs better than the other algorithms.
In particular, the GS is the best 22 times, while the PPC
algorithm is the best 12 times, and the PPS algorithm only
7 times. Although the GS is the best algorithm, it is worse
than the PPC algorithm when 99% of coverage is required.
Besides, the PPS algorithm obtains its better results with
this distribution. This behaviour was expected because solv-
ing the problem with d1 is the same as the pairwise combi-
nation problem without priorities as we commented in sec-
tion 5.1. Particularly, the sorting in PPS is carried out after
executing of a plain pairwise algorithm, which do not use
the weight, since it only tries to cover as many class pairs
as possible in each test datum. This is the reason why the
PPS algorithm works well with the distribution d1.
In d2, when extreme values are used, GS obtains the best

results. It is the best algorithm in 26 scenarios, while the
PPC is the best in 11 and the PPS in 3. The GS performs
quite well for all target weights and it is specially good with
95% of weight coverage, where it is the best in 6 out of 8
scenarios (with statistically significant differences in most of
the cases).
In d3, the GS is slightly better than the PPC algorithm.

The GS obtains the minimum number of test cases in 19
scenarios while the PPC algorithm is the best in 14. Thus,
the GS and the PPC algorithm obtain similar results. When
the target weight is 75%, the PPC algorithm is better in 5
out of the 8 scenarios, but when high coverage is required
(90%) the GS is better in the same proportion (5 out of 8).
When random weights are used (distribution d4), the PPC

and PPS algorithms obtain the worse results of all the dis-
tributions, whilst the GS behaves very well. The GS is the
best in 24 scenarios, the PPC algorithm in 8 and the PPS
only in 4. At the beginning of the search, when the target
weights are less than 75%, the differences among the algo-
rithms are not very large, but for weights larger than 75%
the GS is much better than the others.

The GS is the best algorithm for all the studied distri-
butions as we have commented in the previous paragraphs.
However, if we analyze the results by considering each sce-
nario independently, some weaknesses of the GS appear. Let
us analyze the influence of the benchmark scenarios in the
obtained results. In Table 3 we summarize the number of
scenarios in which one algorithm is better than the others.

Table 3: Number of times that one algorithm is bet-
ter than the other two for each instance.

Scenario GS PPC PPS
S1 0 0 12
S2 8 18 0
S3 9 3 0
S4 14 9 1
S5 13 6 3
S6 24 1 0
S7 5 2 0
S8 19 6 -

In S1, the GS is not the best in any combination distribu-
tion/scenario. In this small scenario, the PPS algorithm is
the best (12 times), while the other algorithms cannot out-
perform PPS. Since it is a small scenario, there is no reason
to use a prioritized test case generation, but at least these
bad results should be taken into account as a disadvantage
of the prioritized generation.

In S2, the PPC algorithm is the best. It is the best in 18
observations, the GS is the best in 8 and the PPS algorithm
never outperforms the previous algorithms in this scenario.
In d1, d2 and d3 distributions the GS is the best for 25%
target weight, which means that the algorithm is able to
combine high weight pairs in early test cases. For the rest
of target weights, the PPC algorithm is the best.

In the other six scenarios we can observe that GS is usually
the algorithm computing the best results. In particular, in
s6 it is the best in 24 observations out of 28, while the PPC
algorithm is the best only in 1 observation, and the PPS
algorithm is never the best.

We also show in Table 4 the number of observations where
there exists significant difference among the GS, the PPC
and PPS algorithms. The number in front of a triangle up
(N) is the number of times that the results of GS are better
than the ones of the other algorithms with statistically sig-
nificant difference. The number in front of a triangle down
(▽) is the number of times GS is worse with statistically
significant difference. According to the results of Table 4,
the GS is better than the other two algorithms in all the
distributions. In the comparison between GS and PPC, the
best distributions for the GS are d1 and d2 where the GS
outperforms the PPC algorithm in 28 and 26 times, respec-
tively. If we compare the GS and the PPS algorithm, the
differences between the algorithms are even larger. In d2
and d4 the GS outperforms in 42 and 41 times, respectively.
Thus, based on the statistical tests, we can state that the
GS is clearly the best algorithm.

Table 4: Number of observations where there exists
significant difference among the GS, the PPC and
PPS algorithms.

Algorithm-Distribution PPC PPS
GS-d1 28N10▽ 29N8▽
GS-d2 26N9▽ 42N3▽
GS-d3 19N10▽ 29N8▽
GS-d4 22N6▽ 41N4▽

In conclusion, the GS obtains better test suite size for all

1218

the distributions. There is not much difference among the
distributions, thus the good performance of the GS does not
depend on the distribution itself. According to the target
weights, the GS is always the best except when the target
weight is 75%. Under that circumstances the PPC algorithm
and the GS obtain similar results. PPC is better in 12 ob-
servations while the GS is better in 11. Thus, we consider
that GS is better in most target weights as well. Despite the
optimization solver is the best in most cases, there are two
scenarios, S1 and S2, where the GS is not the best. In the
first one, S1 (the smallest), sorting is clearly the best option.
In the second one, S2, GS is not the best but for the firsts
weight coverage it obtains the best results. This behaviour
is desirable when we are computing prioritized test data.

5.2.2 Comparison between Genetic Solver and other
existing algorithms

In this section we compare the results of our evolution-
ary algorithm with the ones of other approaches found in
the literature. We show in Table 5 the results of three ap-
proaches (GS, DDA and BDD), with eight scenarios, four
distributions and three values of weight coverage 50%, 75%
and 100%. We have chosen these values according to the in-
formation available on these approaches extracted from the
literature.

Table 5: Number of test cases needed for the GA,
DDA, and BDD algorithms in eight scenarios and
for four distributions. When significant differences
exist between the GS and other algorithm we add
an asterisk. Algorithm legend: G ≡ GS , D ≡ DDA
and B ≡ BDD

50% 75% 100%

G D B G D B G D B

S1-d1 5 5 5 7,48 7* 7* 10,42 9* 10
S2-d1 56,1 57* 62* 96,76 97 112* 203,29 220* 251*
S3-d1 6 6 6 9,02 9 11* 31,91 32 33*
S4-d1 21,02 22* 26* 39,67 40* 47* 97,53 95* 94*
S5-d1 15,97 16 19* 33,65 33* 37* 75,16 72* 74*
S6-d1 45,98 47* 62* 82,48 84* 105* 171,38 175* 184*
S7-d1 4 4 4 7 7 8* 29,47 29* 28*
S8-d1 8 8 13* 16,38 16* 35* 437,81 400* 400*

S1-d2 1 1 1 3 3 3 11,98 14* 14*
S2-d2 19 19 21* 38,13 39* 49* 221,53 256* 278*
S3-d2 1 1 1 3,64 4* 4* 31,45 35* 35*
S4-d2 7 7 10* 15,46 16* 22* 103,39 203* 100*
S5-d2 5 5 7* 12,06 12 15* 79,21 83* 83*
S6-d2 16 16 28* 31,33 32* 55* 185,94 192* 207*
S7-d2 1 1 1 2 2 2 28,81 31* 29
S8-d2 3 3 3 9 9 16* 438,4 400* 400*

S1-d3 5 5 5 7,35 8* 7* 10,19 13* 10
S2-d3 56,09 60* 62* 96,78 112* 112* 203,2 325* 249*
S3-d3 6 6 6 9,03 10* 11* 31,9 37* 33*
S4-d3 8 8 8 16 19* 18* 113,24 115* 137*
S5-d3 4 4 5* 9 10* 10* 84,66 94* 101*
S6-d3 25 26* 27* 44,1 51* 53* 179,63 208* 222*
S7-d3 3 3 4* 6 6 7* 30,81 33* 33*
S8-d3 5,76 6 6 9,59 10 11* 407,47 417* 463*

S1-d4 3 3 4* 6 5* 6 12 13* 13*
S2-d4 31 32* 44* 64,02 67* 94* 220,59 265* 286*
S3-d4 3 3 5* 7 7 11* 31,28 34* 47*
S4-d4 14,09 25* 17* 28,09 29* 33* 99,95 100 108*
S5-d4 8 9* 10* 18,05 19* 24* 76,96 82* 88*
S6-d4 25,98 27* 35* 52,1 56* 70* 178,44 192* 208*
S7-d4 2 2 3* 5 5 7* 28,05 32* 42*
S8-d4 5 5 8* 14 15* 26* 418,77 406* 406*

11 0 0 18 5 1 23 2 4

Let us analyze the obtained results by weight coverage.
If we focus on 50% of weight coverage, we can see that the
GS is the unique algorithm that is able to outperform the
others. The GS is the best in 11 observations. The GS is
even better in the first measures of coverage, when it is more
difficult to generate differences. For 50% of weight coverage
the DDA algorithm needs 5.24% more test cases and the
BBD algorithm needs 23.34% more test cases than the GS.
Thus, we can state that our algorithm is clearly the best for
50% of weight coverage.

For 75% of weight coverage, the GS is the best again. Our
algorithm is better than the other algorithms in 18 observa-
tions, while the DDA algorithm is the best in 5 observations
and the BDD algorithm is the best in only one. For this
value of weight coverage, the DDA and BDD algorithms
need 4.98% and 28.63% more test cases, respectively. Once
again the GS obtains better results than the DDA and BDD
algorithms.

For total coverage, the GS is better than the other algo-
rithms in 23 observations, the DDA in 2 and the BDD in
4. The difference between the GS and the others here is the
largest one. This is a very interesting property of our GS
algorithm, since it is not usual that an algorithm which is
good for low/medium values of weight coverage is also good
for total coverage. It is noteworthy that we do not configure
the algorithm to obtain good test suite size for a particular
value of coverage, but we just try to achieve all values of
coverage with the minimum number of test data.

Regarding the different distributions, the GS maintains a
good behaviour in all the distributions. The GS algorithm
is the best in 10 observations with distributions d1 and d2.
In addition, the GS is even better in the distributions d3
and d4, since it is the best in 16 observations. Besides, if
we focus on the other algorithms, the differences appear.
The d1 is clearly the best distribution for them. We should
highlight that d1 (equal weights) is the distribution where
the priority is not used, the same weight is used for all the
classes.

In order to provide a high level of confidence to these re-
sults, we have performed statistical tests. The results are
shown in Table 6. There are some differences among the
algorithms; we again take as a reference the GS values. De-
spite the GS and the DDA are both statistically better in
7 times for the d1 distribution, in the rest of values of the
table we can see that the GS is clearly the best algorithm.
In the comparison between GS and DDA, the GS is sig-
nificantly better in 49 observations while the DDA is only
significantly better in 10 observations. In the comparison
between GS and BDD, the GS is significantly better in 71
observations while the BDD is only significantly better in 9
observations. Thus, we can state again that the GS is the
best overall algorithm for the prioritized pairwise combina-
tion problem.

Table 6: Number of observations where there exists
significant difference among the GS, the DDA, and
BDD algorithms.

Algorithm-Distribution DDA BDD
GS-d1 7N7▽ 15N5▽
GS-d2 10N1▽ 16N2▽
GS-d3 16N0▽ 18N1▽
GS-d4 16N2▽ 22N1▽

6. CONCLUSIONS
In this paper we have studied the prioritized pairwise test

data generation problem with the aim of analyzing the per-
formance of several approaches. We have compared five dif-
ferent approaches, three of them proposed by the authors.
Our three approaches have been successfully implemented in
the classification tree editor, thus they could be integrated
in a professional tool. The other two approaches have been
extracted from the literature. A benchmark of eight scenar-
ios and four weight distributions were used to execute all
the algorithms. We have performed some experiments on

1219

these 32 different scenario/distribution combinations and for
different values of weight coverage, which makes our study
meaningful.
One of our proposals is a genetic algorithm. To the best of

our knowledge, it is the first time that an evolutionary algo-
rithm is used to solve this problem. The genetic algorithm
outperforms the other algorithms in most scenarios and dis-
tributions, it is the best choice when one has some time
restrictions or the execution of a test case is quite costly.
After analyzing the results obtained by all the algorithms

we can draw some advices about which technique should be
used. If the results of a particular technique like PPS are
good for equal weight distribution (d1) but are not good
enough for the other distributions, then the technique is de-
signed to be used without priorities. If one really needs
some values of weight coverage for different scale scenarios
and non-uniform distributions, the genetic solver is the best
choice. But, if the GS does not achieve a satisfactory re-
sult for a particular configuration, one should use the PPC
algorithm. Finally, if the test suites have already been com-
puted, the PPS algorithm should be used in order to give a
better ordering of the test cases.
Future work will verify these findings with larger scenarios

and more distributions. We would like to deal with prior-
itized t-wise coverage that is an open and interesting field
for research, besides, it could pose a real challenge for the
community. In this way, we also want to advance in design-
ing better evolutionary algorithms, who seems to be very
effective for solving this kind of problems.

7. REFERENCES
[1] S. Amland. Risk-based testing: Risk analysis

fundamentals and metrics for software testing
including a financial application case study. Journal of
Systems and Software, 53(3):287–295, 2000.

[2] A. Baresel, D. W. Binkley, M. Harman, and B. Korel.
Evolutionary testing in the presence of loop-assigned
flags: A testability transformation approach. In ISSTA
2004, pages 108-118, 2004.

[3] Bryce and Memon. Test suite prioritization by
interaction coverage. In DOSTA’07, pages 1-7, New
York, 2007.

[4] R. C. Bryce and C. J. Colbourn. Prioritized
interaction testing for pair-wise coverage with seeding
and constraints. Information and Software Technology,
48(10):960-970, 2006.

[5] R. C. Bryce and C. J. Colbourn. One-test-at-a-time
heuristic search for interaction test suites. In GECCO
’07, pages 1082-1089, New York, 2007.

[6] D. Cohen and Shi. Interaction testing of
highly-configurable systems in the presence of
constraints. In ISSTA ’07, New York,2007. ACM.
594071.

[7] M. Cohen, J. Snyder, and G. Rothermel. Testing
across configurations: implications for combinatorial
testing. SIGSOFT Softw. Eng. Notes, 31:1–9,
November 2006.

[8] E. Dı́az, R. Blanco, and J. Tuya. Tabu search for
automated loop coverage in software testing. In
(ICKEDS ↪a06), pages 229-234, Porto, 2006.

[9] S. Elbaum, A. Malishevsky, and G. Rothermel. Test
case prioritization: a family of empirical studies. IEEE

Transactions on Software Engineering, 28(2):159 –182,
feb 2002.

[10] S. Elbaum, G. Rothermel, S. Kanduri, and A. G.
Malishevsky. Selecting a cost-effective test case
prioritization technique. Software Quality Control,
12:185–210, September 2004.

[11] M. Grindal, J. Offutt, and S. F. Andler. Combination
testing strategies: A survey. Software Testing,
Verification, and Reliability, 15:167–199, 2005.

[12] M. Grochtmann and K. Grimm. Classification trees
for partition testing. Software Testing, Verification
and Reliability, 3(2):63–82, 1993.

[13] M. Harman. The current state and future of search
based software engineering. In (ICSE/FOSE ’07),
pages 342-357, Minneapolis, May 2007.

[14] M. Harman and B. F. Jones. Search-based software
engineering. Information & Software Technology,
43(14):833–839, December 2001.

[15] Y. X. Jones B, Sthamer H and E. D. The automatic
generation of software test data sets using adaptive
search techniques. In 3rd International Conference on
Software Quality Management, pages 435–444, 1995.

[16] B. Korel. Automated software test data generation.
IEEE Trans. Softw. Eng., 16(8):870–879, 1990.

[17] R. Kuhn, Y. Lei, and R. Kacker. Practical
combinatorial testing: Beyond pairwise. IT
Professional, 10:19–23, May 2008.

[18] C. Y. Lee. Representation of switching circuits by
binary-decision programs. Bell System Technical
Journal, 38:985:999, July 1959.

[19] E. Lehmann and J. Wegener. Test case design by
means of the cte xl. In EuroSTAR 2000, Kopenhagen,
Denmark, December 2000.

[20] P. McMinn. Search-based software test data
generation: a survey. Software Testing, Verification
and Reliability, 14(2):105–156, June 2004.

[21] W. Miller and D. L. Spooner. Automatic generation of
floating-point test data. IEEE Trans. Software Eng.,
2(3):223–226, 1976.

[22] T. N. A search-based automated test-data generation
framework for safety critical software. Master’s thesis,
PhD Thesis, University of York, 2000.

[23] C. Nie and H. Leung. A survey of combinatorial
testing. ACM Comput. Surv, 43(2):11, 2011.

[24] T. J. Ostrand and M. J. Balcer. The category-partition
method for specifying and generating fuctional tests.
Commun. ACM, 31:676–686, June 1988.

[25] X. Qu, M. Cohen, and K. Woolf. Combinatorial
interaction regression testing: A study of test case
generation and prioritization. In ICSM 2007, pages
255 –264, oct. 2007.

[26] E. Salecker, R. Reicherdt, and S. Glesner. Calculating
prioritized interaction test sets with constraints using
binary decision diagrams. ICSTW ’11, pages 278–285,
Washington, 2011.

[27] G. H. Walton, J. H. Poore, and C. J. Trammell.
Statistical testing of software based on a usage model.
Softw. Pract. Exper., 25:97–108, January 1995.

[28] Y. Zhan and J. A. Clark. The state problem for test
generation in simulink. In GECCO’06:, pages
1941–1948. ACM Press, 2006.

1220

