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Context: The generation of dynamic test sequences from a formal specification, complementing
traditional testing methods in order to find errors in the source code.
Objective: In this paper we extend one specific combinatorial test approach, the Classification Tree
Method (CTM), with transition information to generate test sequences. Although we use CTM, this exten-
sion is also possible for any combinatorial testing method.
Method: The generation of minimal test sequences that fulfill the demanded coverage criteria is an
NP-hard problem. Therefore, search-based approaches are required to find such (near) optimal test
sequences.
Results: The experimental analysis compares the search-based technique with a greedy algorithm on a
set of 12 hierarchical concurrent models of programs extracted from the literature. Our proposed
search-based approaches (GTSG and ACOts) are able to generate test sequences by finding the shortest
valid path to achieve full class (state) and transition coverage.
Conclusion: The extended classification tree is useful for generating of test sequences. Moreover, the
experimental analysis reveals that our search-based approaches are better than the greedy deterministic
approach, especially in the most complex instances. All presented algorithms are actually integrated into
a professional tool for functional testing.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Software testing is a very important phase in the software
development life cycle the goal of which is to ensure a certain level
of software quality. The high economic impact of an inadequate
software testing infrastructure was detailed in a survey [1]. In
addition, it is estimated that half the time spent on software pro-
ject development and more than half its cost, is devoted to testing
the product [10]. The automation of test generation could reduce
the cost of the whole project, this explains why both the software
industry and academia are interested in automatic tools for testing.
As the generation of adequate tests implies a big computational
effort, search-based approaches are required to deal with this
problem. Nowadays, automatic software testing is one of the most
studied topics in the field of Search-Based Software Engineering
(SBSE) [16,27].
Evolutionary Algorithms (EAs) have been the most popular
search-based algorithms for generating test cases [27]. In fact, the
term evolutionary testing is used to refer to this approach. In the par-
adigm of structural testing a lot of research has been carried out
using EAs, but the use of search-based techniques in functional test-
ing is less frequent [36], the main cause being the implicit nature of
the specification, which is generally written in natural language.

Traditionally, the challenge has been to generate test suites to
completely test the software. Complete testing is not feasible for
arbitrarily large projects [21], so a good subset of all possible test
cases has to be selected. Combinatorial Interaction Testing (CIT)
[7] tries to address this problem. CIT approaches attempt to find a
minimal test suite which fulfills the desired coverage. Generally, this
task consists of generating, at least, all possible combinations of the
parameters’ values (this task is NP-hard [37]). The strength of the
testing approach, t-strength, depends on the number (t) of parame-
ters involved in the combinations (i.e., t = 2 for pairs, t = 3 for triples,
etc.). Although combinatorial testing has been widely studied, we
still find two main issues that have not been addressed by the
traditional generation of test suites: the dependencies between
individual test cases and the state of the software under test (SUT).
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Fig. 1. Example of classification tree: video game classification tree.
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Sometimes software is required to be in a particular state to
test a given functionality. This is the case of most programs.
Indeed, in very large software systems, the cost incurred to place
the system in a certain state can be an issue. For example, testing
the anti-lock braking system (ABS) of a car requires that the car
reaches a certain speed before the system can be tested. So it
makes sense to consider the generation of test sequences that
allow us to test a particular functionality (acceleration of the
car) while we change the state of the SUT (considering the depen-
dency rules in the test cases) to test the next functionality (ABS).
The implicit cost savings of using this technique is the reason why
the generation of test sequences is relevant and deserves more
research effort.

One CIT approach, the Classification Tree Method (CTM) [13] for
functional testing, is used for test planning and test design. This
method allows a systematic specification of the system under test
and its corresponding test cases can be created automatically using
CIT. Here, we extend the Classification Tree Method with transition
information in order to be able to find the shortest test sequences.

We present a couple of metaheuristic approaches for computing
optimal test sequences automatically. They are able to find near
optimal solutions using a reasonable amount of resources [5]. We
have compared the behavior of two metaheuristic techniques with
an existing greedy algorithm [22]. The first proposed approach is a
Genetic Algorithm (GA) called Genetic Test Sequence Generator
(GTSG). We have improved a GTSG with the addition of a memory
operator (MemO), which is based on the operator proposed by Alba
et al. [3]. It is used to reduce the amount of resources needed to
compute a solution.

The other proposed algorithm is an Ant Colony Optimization
(ACO) [9]. Specifically, we propose a new technique based on an
ACO algorithm that is able to deal with large construction graphs.
It is able to find near-optimal solutions in separated areas of the
search space for the Test Sequence Generation Problem (TSGP). It
is called ACO for test sequence generation (ACOts). Both proposed
metaheuristic approaches are used in our approach to generate test
sequences to obtain full class and transition coverage of 12 differ-
ent programs extracted from the literature. The main contributions
of our approach are:

� We extend CTM in order to automatically generate test
sequences. We formally define the Extended Classification Tree
Method. Other combinatorial testing methods could be
extended in the same way. The definition of an extended CTM
could be done by a professional tool called CTE XL (see Fig. 3).
� We present an evolutionary test sequence generator for the

CTM using a GA with a memory operator (MemO). In addition,
we propose a new technique based on ACO (ACOts). These
approaches can compute test sequences for full class and tran-
sition coverage without having to know the length of the
sequences in advance.
� We perform an experimental analysis using 12 software models

and comparing three different techniques.

The remainder of the paper is organized as follows. In Section 2
we present the background to the Classification Tree Method: how
it is designed, how we have extended it and what is the adequacy
criterion, and we briefly describe the CTE professional tool. Section
3 describes the Test Sequence Generation Problem and, then, it
defines an extension of the classification tree in order to deal with
test sequences. Section 4 presents our GTSG, ACOts, and outlines a
deterministic greedy algorithm re-implemented for comparison
purposes. Section 5 is devoted to presenting the benchmark of pro-
grams and analyzing the results of the three approaches. Section 7
surveys related work. Finally, in Section 8 some conclusions and
future work are outlined.
2. The Classification Tree Method

The Classification Tree Method [13] is intended for systematic
and traceable test case identification for functional testing over
all testing levels (for example, component test or system test). It
is based on the category partition method [31], which divides a test
domain into disjoint classes representing important aspects of the
test object. These classes can be seen as the states of the SUT.
Applying the Classification Tree Method involves two steps:
designing the classification tree and defining test cases. In addition,
the extension of the Classification Tree Method and the coverage
criteria are also described in this section.

2.1. Design of the classification tree

The classification tree is based on the functional specification of
the test object. For each aspect of interest (called classification), the
input domain is divided into disjoint subsets (called classes). Fig. 1
illustrates the concept of classification tree with a simple example
for a video game. Two aspects of interest (Game and Pause) have
been identified for the system under test. The classifications are
refined into classes which represent the partitioning of the con-
crete input values. These partitions can also be further refined by
introducing new low-level classifications and classes. In our exam-
ple the refinement aspect Playing is identified for the class running-
Game and it is divided into a further two classes startup, and
controlling.

Given the classification tree, test cases can be defined by com-
bining classes from different classifications. Since classifications
only contain disjoint values, test cases cannot contain several clas-
ses of one classification. A test case for the running example is:

Game : runningGameðPlaying : startupÞ; Pause : running:

in which class running is selected from classification Pause and run-
ningGame is selected from Game. Since class runningGame has an
inner classification, Playing, we have to select a class from it, this
class is startup in our case.

A test sequence is an ordered list of test cases or test steps
which could be sequentially visited with the aim of completely
testing the functionality of the whole system.

2.2. Extensions of the classification tree

The classification tree defined in the previous section can be
used to design test cases in isolation. However, the test object
can have operations related to transitions between classes in the
classification tree and executing these transitions is the only way
we can reach a given state (test case) of the object. Let us take
our video game example and let us imagine that we need to exe-
cute some code when the user changes the state of the object from
starting game to running game. These operations can be modeled by
extending the Classification Tree Method with transitions between
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classes (see Fig. 2). In a real-world example, these transitions come
from the semantics of the software object. We also assume that
each classification has a default class that we highlight in the graph-
ical representation by underlining the class. This extension of the
classification tree can be seen as a hierarchical concurrent state
machine (HCSM) or statechart [15] where classes match states,
and classifications match orthogonal regions.

When the transition information is available we are also inter-
ested in covering all the possible transitions in the system. In this
case, sequences of test cases play a main role rather than the iso-
lated test cases. In effect, an isolated test case does not describe
which transitions were executed to get that test case and, thus,
does not determine the transitions executed. For this reason, our
goal in this work is to provide test suites composed of sequences
of test cases that cover not only all the possible classes in the clas-
sification tree but also all the transitions using the minimal num-
ber of total test cases. We will give more details of the Extended
Classification Tree Method (ECTM) in Section 3 and we will provide
a formal definition and semantics in A.

2.3. Coverage criteria

In this paper we have chosen two coverage criteria: class and
transition coverage. The class coverage criterion consists of cover-
ing all the classes of the classification tree with the generated test
suite. The transition coverage requires covering all the transitions
available between the classes of the ECTM. In our running example
of Fig. 2, we have to cover eight classes for total class coverage (Vid-
eoGame, startingGame, runningGame, startup, controlling, gameOver,
running, and paused), and five transitions to obtain full transition
coverage ({startingGame ? runningGame, startup ? controlling,
controlling ? gameOver, running ? paused, paused ? running}).

Similarly to the conventional test data generation, t-way
sequences introduced by Kuhn et al. [23] can be mapped onto
our coverage criteria: t-wise coverage for both classes and transi-
tions. The 1-way sequence coverage of Kuhn et al. corresponds to
1-wise (or minimal) class coverage here. Each class is supposed
to be contained at least once in the resulting test suite (or result
set as Kuhn et al. call it). The 2-way sequence coverage of Kuhn
et al. corresponds to our 1-wise (or minimal) transition coverage.
All valid transitions between classes are supposed to be contained
at least once in the result set. In conventional test case generation
with the Classification Tree Method, there is no coverage criterion
for transitions. Higher t-way (with t > 2) sequence coverage has
not yet been included and requires further work.

2.4. Classification Tree Editor

The Classification Tree Editor [24] is a software tool supporting
the Classification Tree Method (Fig. 3). It incorporates classification
tree elements. Current versions of the CTE XL (professional) sup-
port automated test case generation and user-defined dependency
Fig. 2. Video game ECTM example.
rules; the valid transitions among classes could be defined by the
user. However, the test sequence generation cannot be done auto-
matically. In this paper we are going to deal with the automatic
generation of test sequences. In the following section we describe
the test sequence problem and we define how we interpret the
extended classification tree.

3. Test Sequence Generation Problem

The problem of generating test sequences has received little
attention in the existing literature, much less than the traditional
generation of test data. As far as we know, this paper is the first
in which the CTM has been extended to compute test sequences
for functional testing. In addition to the constraints defined by
the classification-classes hierarchy, in the Test Sequence Genera-
tion Problem (TSGP) we take dependency rules into account. These
are constraints between single test steps, i.e., restrictions on the
transitions between classes. Within each test sequence, depen-
dency rules must not be violated.

Dealing with dependency rules is important since the testing
of several states could be combined, resulting in shorter test
sequences. In this way, we need fewer resources to test all
functionality.

For example, testing a car at high speed implies using the accel-
erator pedal, but it is not possible to use the brake at the same
time, so after it is necessary to test the brake. We could plan a
sequence of test cases to check several functionalities instead of
one. We could reduce the cost by testing the functionalities in a
sequence. Since it would be more costly to test one functionality,
then putting the system into an initial state to test the next func-
tionality, than testing all the functionalities sequentially. In addi-
tion, it is desirable that the set of generated test sequences as a
whole fulfills predefined coverage levels. So, it could be useful to
generate a test suite with test sequences covering all possible clas-
ses or transitions between classes of the classification tree.

Our approach for test sequence generation is based on an idea
proposed by Conrad [8], who suggests the interpretation of clas-
sification trees as parallel FSMs. However, we need to extend
Conrad’s approach to interpret refined classes of the classification
tree. This concept is similar to the refinements of states in UML
statecharts. Our approach can be seen as a statechart, because
we have concurrent states and we have added hierarchies to
the model. An example of a statechart can be seen in Fig. B.7,
where we show the model of the Citizen watch by Harel [15].
Later, in the experimental section, we analyze this model in
detail. We now describe in plain text the Test Sequence Genera-
tion Problem.

One test case for an ECTM is a set of classes that fulfills some
rules. In particular, it is not possible to have two classes that belong
to the same classification and if a refined class is in the test case
then there must be one class for each classification in which the
parent class is refined. In addition, if a class is in the test case, all
the ascendant classes in the ECTM must be also included in the test
case. For example, the set Q ¼ fstartingGame; runningg is a test
case, but the set Q ¼ frunningGameg is not a test case because
there is no class of the Pause and Playing classifications.

We can transit from one test case to another one by taking one
of the transitions between classes. The test case we reach excludes
the source class of the transition and includes the destination class
of the transition. In order to fulfill the rules described for the test
cases, some classes in the starting test case could also go out of
the set and additional classes could enter the new test case. For
example, if we take transition startingGame! runningGame from
test case Q 1 ¼ fstartingGame; runningg in our video game example,
we reach the test case Q2 ¼ frunningGame; startup; runningg. We
observe that class startingGame was removed from Q1 and class



Fig. 3. CTE XL professional tool.

422 J. Ferrer et al. / Information and Software Technology 58 (2015) 419–432
runningGame was added to Q 2, but we also need to add class
startup because runningGame is a refined class. A test sequence is
a list of test cases in which all except the first one are obtained
by applying a transition from the previous one. A sequence of
length three for our running example could be composed of test
cases ðQ 1 ¼ fstartingGame; runningg;Q2 ¼ frunningGame; startup;
runningg and Q 3 ¼ frunningGame; startup; pausedgÞ.

If two different transitions can be used to transit in a given state
and they affect different sets of classes it is possible to group them
and consider one single step transition with the joint effect of both.
In our example the transitions startingGame! runningGame and
running ! paused affect different sets of states since they belong
to sibling classifications. Then, we can compose the transitions
and build the test sequence of length two ðQ 1;Q 3Þ. This sequence
covers the same transitions as the sequence ðQ 1;Q 2;Q3Þ.

Given a test sequence we define the class coverage as the num-
ber of classes appearing in the test cases of the sequence divided by
the total number of classes in the ECTM. We define the transition
coverage as the number of transitions covered by the sequence
divided by the total number of transitions. The problem we are
interested in solving consists in finding a set of test sequences such
that the coverage (class or transition, one each time) is maximized.
For a more precise and formal definition of the concepts presented
in this section the reader should refer to A.
4. Nature inspired algorithm for Test Sequence Generation
Problem

In this section we describe three different approaches used to
solve the TSGP. We first introduce an evolutionary approach, a
Genetic Algorithm. Second, we describe our algorithmic proposal
based on ACO for dealing with the TSGP. Finally, we briefly
describe a state of the art technique from the literature for compar-
ison purposes. We would like to highlight that the size of the test
cases that compose a test sequence can vary from one to another.
This fact is due to the hierarchical structure of the model. One class
could be refined in several sub-classes, then the length of the test
cases would be different. Consequently, we have to deal with the
dynamic size of test cases in the ECTM.
4.1. Genetic Test Sequence Generator

The Genetic Test Sequence Generator (GTSG) constructs an
entire test suite taking into account the dependencies between test
data in the generation of the sequence. GTSG is an algorithm that
evolves a population of solutions in each iteration until a given
coverage criterion is fulfilled. The algorithm tries to find the tests
that maximize the coverage, then it sequentially adds them to
the solution (test sequence).

In Algorithm 1 we show the main loop of our GTSG. As input
parameters, the algorithm needs the ECTM model, the algorithm
parameters such as population size (GTSG.popSize), mutation
probability (GTSG.Pm), and the coverage criterion used (criterion).
To start, the test suite is initialized with an empty list (line 2) and
the coverage set (Coverage) is initialized with all classes or tran-
sitions depending on the criterion selected. In line 4, the set init is
initialized with the initial test case Q ini (for a definition of Qini see
A). In each iteration of the external loop, also called optimization
step, (lines 5–22) the algorithm creates a random initial population
of individuals (line 7). The first time the loop is entered it sets the
initial test case of the sequence, in the subsequent iterations the
initial test case is the last one stored in the Memory Operator
which we describe in Section 4.1.1. Then, the GTSG enters an inner
loop which applies the traditional steps of a generational evolu-
tionary algorithm without recombination (lines 8–18). That is,
some individuals (solutions) are selected from the population
PðtÞ, they are mutated and evaluated, and they are finally inserted
in the offspring population A.
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Algorithm 1. Pseudocode of GTSG.
1: proc Input: (ECTM, GTSG, criterion) // Inputs for ‘GTSG’
2: TS  ; // Empty the test suite list
3: Coverage  initializeðcriterionÞ// Initialize the coverage

structure with classes or transitions
4: init  fQinig // Initial classes are the first test case of the

sequence
5: while not emptyðCoverageÞ do
6: t  0
7: PðtÞ  create populationðinitÞ // P = population
8: while evals < totalEvals do
9: A  ; // A = auxiliary population

10: for i ¼ 1 to ðGTSG:popSize=2Þ do
11: parents selectionðPðtÞÞ
12: offspring  mutationðGTSG:Pm; parentsÞ
13: evaluate fitnessðoffspringÞ
14: insertðoffspring;AÞ
15: end for
16: Pðt þ 1Þ  replaceðA; PðtÞÞ
17: t  t þ 1
18: end while//internal loop
19: TS addToListðbest sequenceðPðtÞÞÞ
20: Coverage removeðbest sequenceðPðtÞÞÞ
21: init  MemoryOperatorðbest sequenceðPðtÞÞÞ
22: end while //optimization step
23: end_proc

In this particular algorithm the representation of a solution sol
(test sequence) is a vector of integers of length l. We determine
the length of the chromosome as a parameter of the memory oper-
ator (see next subsection).

sol ¼ ½I1; I2; I3; . . . ; Il�:

The outgoing transitions from a class of the current test case can
be enumerated, thus each number (Ii) can be seen as the next tran-
sition chosen from the actual class to the next one.

The evaluation of a solution is done by sequentially taking every
single transition (class to class) of the solution and generating a
sequence of test data with a particular coverage. The evaluation
function selects one leaf class (from left to right) and one gene in
the solution is consumed to select the next transition ti. Then, ti

is added to the set of selected transitions, T0. In order to transit
from one test case to another, the evaluation function consumes,
at most, as many genes as the number of leaf classes present in
the source test case. We may need to consume a variable number
of integer numbers of the solution to transit to the next test case. It
depends on the source test case. We use the following expression
to select the next transition:

ti ¼ Ii mod jTransitionsðcÞj: ð1Þ

where Ii is the i-th component of the Solution and TransitionsðcÞ is
the list of possible outgoing transitions from class c.

For example, if the evaluation function is considering class ci

and that class has 4 outgoing transitions, we consume the next
gene (integer), e.g. 6, in the solution to determine the next transi-
tion. In this example, we take the second possible transition
(ti ¼ 6 mod 4 ¼ 2).

The fitness value of a solution is the class or transition coverage,
Eqs. (A.3) and (A.4), obtained by the solution when all genes have
been consumed in the evaluation. In this algorithm we wish to
maximize the fitness function given by Eq. (A.3) for Class Coverage
and Eq. (A.4) for Transition Coverage.
The objective of the selection operator is to select several
individuals from the population to which the other operators will
be applied. The recombination operator is not used because the
exchange of genes between two individuals could generate
sequences of meaningless transitions. Since we interpret each
gene in the chromosome as the transition to take from among
all those possible, the interpretation of each number depends on
the previously consumed numbers. Let us explain this issue in
detail.

Let I1 ¼ f1;1;1;2;1;1g and I2 ¼ f1;2;1;2;1;2g be two individu-
als, and let us assume that after the application of the one-point
crossover to them we obtain I01 ¼ f1;1;1;2;1;2g and I02 ¼
f1;2;1;2;1;1g. The four first test cases in the sequences of I1 and
I01 are the same, since they have in common the first three transi-
tions. Solutions I2 and I02 also share the first four test cases. How-
ever, the fourth test case in I2 is different from the fourth test
case in I1 (and I01). As a consequence, the last test cases of the
sequence represented by I01 have nothing to do with the last test
cases in I2. Said in another way, the three last transitions, 2, 1,
and 2, of I2 have a completely different meaning when they appear
in I01 because they are applied to a different test case. If these
transitions in I2 were appropriate because they traversed uncov-
ered transitions and states, in I01 could not be the case. This
fact is contrary to the philosophy behind the recombination
operator, which tries to combine together features of the parent
solutions. In summary, the natural recombination operator using
this representation is quite disruptive and for this reason we do
not use it.

Regarding the mutation operator, it iterates over all the compo-
nents in the solution vector uniformly changing their value by �1.
It linearly increases the probability to mutate a component in order
to give a low probability to the first components of the chromo-
some, and a larger probability to the genes at the end of the chro-
mosome. We aim to maintain the first part of the individual with
fewer changes because a change in a gene could affect the rest of
the sequence. We increase the probability from pm1 to pm2. So here,
pm1 ¼ 0:05 and pm2 ¼ 0:25.

In line 16, the best individuals of PðtÞ and A are kept for the next
generation Pðt þ 1Þ. The internal loop is executed until a maximum
number of evaluations is reached. Then, the best individual (partial
sequence) found is added to the test suite list (line 19) and the
Coverage set is updated by removing the classes or transitions
which are going to be covered by the new best partial sequence.
(line 20). Then, the MemO stores the last test case of the best
sequence to be the initial test case for the next generation (line
21). Finally, the external loop starts again with a new population
until there is no class or transition left in the Coverage set or
the algorithm reach a predefined number of evaluations.

4.1.1. Memory Operator
In the aforementioned GTSG, as the population evolves, the first

transitions in the individual tend to stabilize, but the algorithm
still has to evaluate them at each generation. We propose saving
the resulting stable first transitions in a memory slot to use them
as the starting point for following optimization steps.

We use the memory operator (MemO) to allow the algorithm to
search in stages. This operator was first proposed by Alba et al. [3]
in the context of software verification. The algorithm can optimize
the whole sequence of numbers (transitions) in stages, step by
step, at the same time saving the memory required to evaluate
complete individuals. Instead, we only have to evaluate a shorter
sequence in each individual evaluation. This operator is based on
the so-called missionary technique used in [2] for reaching deep
graph regions in an ACO.

The advantages are obvious: less memory and time are required
to evaluate an individual, and thus the path can maintain a
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constant growth without requiring more time and memory. There
are, of course, disadvantages. In particular, part of the search space
is discarded and that part might in fact contain a good solution, but
this is common in any non-exhaustive search algorithm.

We use the memory operator as follows: the GTSG is executed
using a relatively small chromosome length (in this approach we
use a chromosome length of 20 integers). After a predetermined
number of evaluations (100,000), the memory operator selects
the best individual and stores its transitions to use them as the
starting points for the next optimization steps. The MemO could
store more than one individual as the starting point for the next
generation, but in accordance with previous experimentation per-
formed in the early stages of this paper and the small population
we used, the best choice is to select only the best individual. All
the other transitions are removed from the memory.

4.1.2. Parameter settings
A possible threat to internal validity is that we have experi-

mented with only one set of algorithms’ parameters. Nevertheless,
we have performed a previous experiment in order to select the
best parameters for the GTSG algorithm. We have tried all
combinations of values shown in Table 1. The parameters used in
the final experimentation are the ones highlighted in bold in
Table 1.

4.2. ACO Test Sequence

Our ACO Test Sequence (ACOts) algorithm is an adaptation of
the ACOhg algorithm proposed by Alba and Chicano [2] that can
deal with the construction of huge graphs of unknown size. This
new model was proposed for applying an ACO-like algorithm to
the problem of searching for counterexamples of safety properties
in very large concurrent models. We have adapted the algorithm
with the intention of solving the TSGP.

The ACO metaheuristic [9] is a global optimization algorithm
inspired by the foraging behavior of real ants. The main idea
consists of simulating the ants behavior in a graph, called a
construction graph, in order to search for the shortest path from
an initial set of nodes to the objective ones. The cooperation
between the different simulated ants is a key factor in the search
which is performed indirectly by means of pheromone trails, which
is a model of the chemicals real ants use for their communication.
The main procedures of an ACO algorithm are the construction
phase and the pheromone update. These two procedures are sched-
uled during the execution of ACO until a given stopping criterion is
fulfilled. In the construction phase, each artificial ant follows a path
in the construction graph. In the pheromone update, the phero-
mone trails of the arcs are modified.

In short, two main differences between ACOts and the original
ACO [9] model are as follows. First, the traditional ACO searches
for the shortest path from an initial set of nodes to the objective
ones. Since our objective in TSGP is to cover all classes or
transitions, so we are also interested in visiting all classes and
Table 1
Parameters setting for GTSG. The parameter’s values used in the experimentation are
highlighted in bold.

Parameter Value

Population size 4, 8, 10
Crossover No, Yes (1.0, 0.9, 0.8)
Mutation prob. 0.05, 0.1, 0.2, Dynamic (0.05–0.25)
Memory operator No, Yes
Memory slots 1, 2, 5
Chromosome length 10, 20, 50, 100
using all possible transitions between the first test case and the
final test case. Second, ACOts cannot define final classes or test
cases, the algorithm adds new test cases until the coverage crite-
rion is fulfilled. In Algorithm 2 we present the pseudocode of
ACOts.

Algorithm 2. Pseudocode of the ACOts algorithm.

1: proc Input: (ACOts) //Algorithm parameters in ‘ACOts’
2: init  fQinig; // Initial classes are the first test case of the

sequence
3: s initialize pheromoneðÞ;
4: step 1;
5: while step 6maxsteps^ not empty CoverageðcriterionÞdo
6: for k ¼ 1 to colsize do
7: ak  ;;
8: while jakj 6 kant ^ Tðak

�Þ � ak – ; do
9: node select successorðak

�; Tðak
�Þ; s;gÞ;

10: ak  ak þ node;
11: end while
12: end for
13: s pheromone evaporationðs;qÞ;
14: s pheromone updateðs; abestÞ;
15: step stepþ 1;
16: end while
17: compactSolutionðabestÞ
18: end_proc

In what follows we describe the algorithm, but prior to that we
clarify some issues related to the notation used in Algorithm 2. In
the pseudocode, the path traversed by the k-th artificial ant is
denoted with ak. We use jakj to refer to the length of the path,
the jth node of the path is denoted with ak

j , and ak
� is the last node

of the path. Each node can be seen as a complete test case, the
neighbors of a node are obtained by applying one single transition
to the actual test case. We use the operator þ to refer to the con-
catenation of two paths. The set init is initialized with the initial
test case Qini (for a definition of Qini see A).

The algorithm works as follows. First, the variables are initial-
ized (lines 2–4). All the pheromone trails are initialized with the
same value: a random number between 0.1 and 10. In the init
set, a starting path with only the initial test case Q ini is inserted
(line 1). Therefore, all the ants begin the construction of their path
at Qini.

After the initialization, the algorithm enters a loop that is
executed until a given maximum number of steps have been
performed or an ant reaches full coverage (line 5), depending on
the coverage criterion. The boolean ‘‘Coverage’’ function returns
the structure of coverage (set of classes or transitions) depending
on the coverage criterion. For the construction of the path, the ants
enter a loop (lines 8–11). In line 8, we use the expression Tðak

�Þ � ak

to refer to the elements of Tðak
�Þ that are not in the sequence ak.

That is, in that expression we interpret ak as a set of nodes. In
the loop each ant k stochastically selects the next node (line 9)
according to the pheromone (sij) and the heuristic value (gij) asso-
ciated with each arc ði; jÞ. In particular, if the last node of the k-th
ant path is i ¼ ak

� , then the ant selects the next node j 2 TðiÞ. TðiÞ
contains all possible transitions from all the classes in the current
test case. Formally: TðiÞ ¼ T \ ði� CÞ. Then, the next node is
selected with probability

pk
ij ¼

½sij�a½gij�
b

P
s2TðiÞ½sis�a½gis�

b ; for j 2 TðiÞ; ð2Þ



Fig. 4. An ant during the construction phase.

Table 2
Parameters setting for ACOts. The parameter’s values used in the experimentation are
highlighted in bold.

Parameter Value

a 1, 2, 5
b 1, 2, 5
q 0.1, 0.5, 0.9
Maxsteps 10, 20, 50, 100
ColSize 2, 5, 10
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where a and b are two parameters of the algorithm determining
the relative influence of the pheromone trail and the heuristic
value on the path construction, respectively (see Fig. 4). According
to the previous expression, artificial ants prefer paths with a
higher concentration of pheromone, like real ants in the real
world. When an ant has to select a node, the last node of the cur-
rent ant path is expanded. Then the ant selects one successor
node and the remaining ones are removed from the memory. This
way, the amount of memory required in the path construction is
small.

The heuristic function g depends on each arc of the construction
graph and is defined in the context of ACO algorithms. It is a non-
negative function used by ACO algorithms for guiding the search.
The higher the value of gij, the higher the probability of selecting
arc ði; jÞ during the construction phase of the ants. We use the same
heuristic rate algorithm based on coverage of the greedy determin-
istic algorithm (Section 4.3) that will be presented in the following
section.

The whole construction phase is iterated until the ant reaches
the maximum length kant , or it fulfills the coverage criterion.
When all the ants have built their paths, a pheromone update
phase is performed. First, all the pheromone trails are reduced,
simulating the real world evaporation of pheromone trails,
according to the expression sij  ð1� qÞsij (line 19), where q is
the pheromone evaporation rate and it holds that 0 < q � 1. Then,
the pheromone trails associated with the arcs traversed by the
best-so-far ant (abest) are increased (line 14) using the expression
shown in Eq. (3).

sij  sij þ
1

f ðabestÞ ; 8ði; jÞ 2 abest ð3Þ

where f ðabestÞ is the percentage of coverage of the best-so-far ant.
This way, the best path found is awarded with an extra amount

of pheromone and the ants will follow that path with higher prob-
ability in the next step, as in the real world. Once the termination
condition has been fulfilled, the algorithm applies a compact func-
tion in order to minimize the steps of the abest , resulting in the min-
imum number of different test cases. The compaction is as follows:
since we only apply single transitions between classes, we can
apply several transitions at the same time provided that the source
class of the transitions is not the same or it is not an ascendant or
descendant of the source class of any already selected transition.
Then, we compact some of the single transitions in a complete
transition that save some test cases in the resulting test suite.
Continuing with the example shown in Fig. 2, if the actual test case
is Q1 ¼ fcontrolling; runningg, the following selected transitions are
controlling ! gameOver and running ! paused. Then, we can com-
pact the two transitions in a complete transition to obtain directly
Q2 ¼ fgameOver; pausedg in only one test step.

4.2.1. Parameter settings
As in the case of CTSG, we did a previous experimental analysis

to select the best parameters for ACOts. We have tried all combina-
tions of values shown in Table 2. The parameters used in the final
experimentation are the ones highlighted in bold in Table 1. The
kant parameter is set to 400 in order to allow large enough paths
for finding the objective.

4.3. Greedy deterministic approach

This subsection describes an existing greedy deterministic
approach, first introduced in [22] that will be used here for valida-
tion of our results against a consolidated technique in this prob-
lem. This approach uses a multi-agent system with two kinds of
agents to traverse the classification tree: the walker agent and
the coverage agent. Both agents will cooperatively traverse the
ECTM.

4.3.1. Walker agents
Travelling is done in such a way that only valid paths are taken

and that all traversed paths together result in the desired coverage.
A full description of the algorithm has been given in [22], so we
will only outline it here.

For any classification in the classification tree, a walker agent is
introduced at the initial class. The initial test case is interpreted as
a test step and taken into account for coverage calculation (e.g.
class coverage, transition coverage). All walker agents are then
moved one after another. The path of movement is calculated by
coverage agents. When all agents have been considered once, the
actual position of all agents is again interpreted as a test step,
and is taken into account for coverage calculation, then added to
the resulting test sequence. This is repeated until the desired cov-
erage level has been reached. When there are no more valid paths
to take, walker agents are stuck. In this case, the whole ECTM is
reset to its initial state and a new, additional sequence is created.
When the algorithm has finished a test suite with all test steps is
returned.

4.3.2. Coverage agents
The Heuristic Rate algorithm is run by the aforementioned cov-

erage agent. This agent guides the main algorithm to achieve full
class and/or transition coverage.



Table 3
General characteristics of the benchmark of programs.

Name Classes Transitions Minimal Complete

Keyboard [28] 5 8 2 4
Microwave [25] 19 23 7 56
Autoradio [18] 20 35 11 66
Citizen [15] 62 74 31 3121
Coffee Machine 21 28 9 81
Communication 10 12 7 7
Elevator 13 18 5 80
Tetris 11 18 10 10
Mealy Moore 5 11 5 5
Fuel Control 5 27 5 600
Transmission 7 12 4 12
Aircraft 24 20 5 625
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Algorithm 3. Pseudocode of the Heuristic Rate algorithm.

1: proc Input:candidate (Class or Transition)
2: if classcoverage && selfTransition then
3: return 0
4: end if
5: weight = 1.0; rating = 0
6: queue  /
7: queue += (candidate, weight)
8: while !queue.empty() do
9: (item, weight)= queue.poll()

10: if (item==candidate && rating > 0) then
11: rating+=100; continue
12: end if
13: if (ratedItems contains item) then
14: continue
15: end if
16: ratedItems+=item
17: if (targetNodes contains item) then
18: rating+=10⁄weight
19: end if
20: if (item has (outgoing transitions k childnodes k

classifications)) then
21: weight = weight⁄0.95;
22: end if
23: for all (item has (outgoing transitions && childnodes &&

classifications) of item) do
24: queue+=(item, weight)
25: end for
26: end while
27: return rating
28: end_proc

The Heuristic Rate algorithm is outlined in Algorithm 3. Its main
goal is to rate the candidate transitions or classes in order to decide
which is going to add more coverage to the current solution. The
heuristic algorithm gets a candidate class or transition as input.
For class coverage, self transitions are ignored and then zero is
returned. A self-transition does not increase class coverage because
the origin and the end of the transition is the same class. Otherwise,
it then adds this candidate to a queue together with a weight factor,
with an initial weight factor of one. A weight factor is needed to give
more weight to the closest uncovered classes than those farthest
away. The initial rating is set to zero. The candidate is added to
the list of rated items. Then, while the queue is not empty the algo-
rithm polls (FIFO) the next class and weight factor from the queue.
If the polled node is the original candidate and if the rating is larger
than zero, the algorithm has found a loop path with new items. This
loop path is weighed by adding the value of 100 to the rating
because we found a promising candidate. In this case or when the
current item is on the list of rated items, the while loop passes to
its next cycle. Otherwise this node is added to the list of rated items.
If the node is on the list of target classes (it has not been used in any
test step before), the algorithm adds 10 times the weight factor to
the result rating. Then, if there are outgoing transitions, child nodes
or classifications, the weight factor is multiplied with a punishment
value. Target classes of outgoing transitions and child classes are
then added to the queue together with the new weight factor.
When the queue is empty the rating is returned.

5. Experiments

This section describes the experiments performed on a bench-
mark of programs. In the first subsection we present the bench-
mark of programs that we use in the experimental section. Then,
in the second subsection we analyze the results of the comparison
between the algorithms.

5.1. Experimental benchmark

For the experiments we use a benchmark with 12 different
models of programs/artifacts. We use a Keyboard instance [28], a
Microwave [25], an Autoradio [18], and Harel’s Citizen watch
[15] which is relevant in the literature. From the IBM Rhapsody
instances, we took the Coffee Machine, the Communication exam-
ple, the Elevator, and the Tetris game [20]. In Matlab Simulink
Stateflow, we found Mealy Moore, Fuel Control, Transmission,
and Aircraft [26]. Even though the details of the case studies are
given in Table 3, we highlight here that most instances are hierar-
chical and concurrent. This means that we are going to deal with
test cases of different lengths. In other words, there are test cases
of different lengths in the same sequence.

In Table 3 the second and third columns list some statistics of
the resulting artifacts. Both the number of classes and number of
transitions are given. The fourth and fifth column list the results
for conventional test case generation computed by the CTE tool
with the greedy algorithm for minimal and complete combination.
Numbers indicate the size of the generated test suite.

5.2. Experimental settings

ACOts and GTSG are non-deterministic algorithms, so we per-
formed 30 independent runs per program/coverage criterion for a
meaningful statistical analysis. In order to check whether the differ-
ences between the algorithms are statistically significant or just a
matter of chance, we applied the Wilcoxon rank-sum [32] test and
highlight in the tables, the differences that are statistically signifi-
cant. We set a confidence level of 99.9% (p-value under 0.001) for
the entire comparison (both metaheuristics acting on a program/
coverage). We have marked a result in dark grey when it is the best
and in light grey when it is the second best in performance. When
the result of one algorithm is significantly better than the result of
another algorithm (typically the one whose results is farthest), we
have added an asterisk. Two asterisks are added if the algorithm is
significantly better than the other two algorithms. In addition, with
the aim of properly interpreting the results of statistical tests, it is
always advisable to report effect size measures. For that purpose,
we have also used the non-parametric effect size measure bA12 statis-
tic proposed by Vargha and Delaney [35]. Effect size provides infor-
mation about the magnitude of an effect, which can be useful in
determining whether it is of practical significance or not.

All the executions were run in a cluster of 16 machines with
Intel Core2 Quad processors Q9400 (4 cores per processor) at
2.66 GHz and 4 GB memory running Ubuntu 12.04.1 LTS and man-
aged by the HT Condor 7.8.4 cluster manager.



Table 5
Vargha and Delaney’s statistical test results (bA12) for class coverage. A represents
algorithms in rows and B represents algorithms in columns.

GTSG ACOts Greedy

GTSG – 0.5139 0.3889
ACOts 0.4861 – 0.4167
Greedy 0.6111 0.5833 –

Table 7
Vargha and Delaney’s statistical test results (bA12) for transition coverage. A represents
algorithms in rows and B represents algorithms in columns.

GTSG ACOts Greedy

GTSG – 0.5125 0.4670
ACOts 0.4875 – 0.4545
Greedy 0.5329 0.5455 –

Table 4
Results for test sequence generation for class coverage.
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Let us explain the notation used in the table of results. A single
number n indicates the size of the unique test sequence: it is the
number of generated test steps n needed for 100% coverage. In
the case of the metaheuristic algorithms, we provide the mean
over the 30 executions. A number n followed by a percentage value
ðp%Þ indicates the number of generated test steps n together with a
coverage level p% below 100%. When the number n is followed by
another number ðmÞ, the first number n indicates the total number
of test steps while the second number m in parentheses indicates
the number of sequences needed. We have implemented a re-boot
mechanism in all the algorithms in case they reach a class with no
exit transition.

5.3. Experimental analysis

In this section, we analyze the behavior of the proposed
approaches with the aim of analyzing the computed best solutions
and highlighting the algorithm that behaves the best. The main
Table 6
Results for test sequence generation for transit
results of the executions of the algorithms for class coverage and
transition coverage can be seen in Tables 4 and 6, respectively.

For class coverage, 100% coverage was reached for 11 out of 12
programs. Achieving full coverage is the main objective for test
case generation. The Aircraft program was the only one resulting
in below 100%, having an 86.2% coverage, as there are unreachable
or orphaned classes in the model. In all 12 programs, the highest
possible class coverage was reached in a single test sequence,
which is a desirable result. Regarding class coverage, differences
appear in four programs (Microwave, Autoradio, Citizen, and
Tetris). The greedy approach obtains better results in the Autoradio
program, where the difference with GTSG is not significant. For the
other three programs the metaheuristic algorithms achieve total
coverage using fewer test steps. For instance, both metaheuristic
algorithms reduced the test suite size by more than 20% for the
Tetris program.

Let us analyze the Citizen program for class coverage. The anal-
ysis of this program is especially interesting because this is the
most complex program. Furthermore, the differences between
the algorithms are the largest. ACOts obtains the best results in this
program. ACOts reduces the test suite size by more than 23% with
respect to the Greedy algorithm, moreover it is 9% better than
GTSG. In addition, GTSG is 15% better than the Greedy algorithm.
The ACOts approach is more effective and accurate for the largest
model used in this study.

In light of these results and with the intention of determining
whether the results are of practical significance or not, we analyze
the bA12 statistic as follows: given a performance measure M; bA12

measures the probability that running algorithm A yields higher
M values than running another algorithm B. If these two algorithms
are equivalent, then bA12 ¼ 0:5. If bA12 ¼ 0:3 entails one would
obtain higher values for M with algorithm A, 30% of the times. In
this regard, A represents algorithms in rows and B represents
algorithms in columns. In Table 5 we summarize the average of
the bA12 statistic values for class coverage and all programs. The
differences between algorithms are not very large due to we have
selected small, medium, and large programs. Consequently, it is
very difficult to obtain large differences in small and medium
ion coverage.
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models. Numerically, the results of the ACOts are going to be better
than the ones provided by GTSG and Greedy in 51.39% and 58.33%
times, respectively. In addition, the results of GTSG are going to be
better than the Greedy ones in 61.11% times, which is a big
difference.

For transition coverage (Table 6), only ACOts is able to obtain 100%
coverage in all the programs. The other two algorithms fail to obtain
total coverage in the one program (Citizen). In 11 of the 12 pro-
grams, the result only consisted of one test sequence, while in the
Aircraft program two sequences were generated. We have imple-
mented a re-boot mechanism in all the algorithms in case they reach
a class with no exit transition, this is the reason why two sequences
are needed to reach total coverage in the Aircraft program. The dif-
ferences appear in five programs (Autoradio, Citizen, Coffee, Com-
munication, and Fuel Control). In this case the Greedy algorithm is
only better than the others in the Coffee Machine program, the
Greedy algorithm reduces the test suite size, in this program, in
one test case compared to the metaheuristic approaches. The exist-
ing differences are low in most cases except in the Citizen program
where ACOts is clearly the best. It is the only algorithm that always
achieves 100% transition coverage for all the programs. In the Citi-
zen program the Greedy algorithm does not achieve full transition
coverage while GTSG obtains total coverage in most executions.
ACOts is better than GTSG in coverage and test suite size. ACOts is
able to reduce the test suite size by 14.7% (with respect to GTSG).

Table 7 shows the bA12 statistical results for measuring the effect
size for transition coverage. We have considered all programs, with
the exception of the Citizen program where the results are not
comparable. This fact is because neither GTSG nor the Greedy algo-
rithm are able to reach full transition coverage, so the test suite is
shorter but it is quite worse in quality (coverage). Although we
have not included the Citizen results, where the ACOts algorithm
is clearly superior, ACOts is still better than GTSG and Greedy by
51.25% and 54.55%, respectively. Furthermore, GTSG obtains smal-
ler test suites than Greedy by 53.29%. Regarding the solution qual-
ity (coverage level), the metaheuristic approaches (ACOts and
GTSG) seem to be competitive. They are both capable of generating
test sequences with maximum levels of coverage, and obtain better
results than the Greedy algorithm with a high probability.
5.4. Test suite coverage versus test suite size

Another aspect that we must take into account is the increase in
the test suite size with the coverage in order to obtain total
coverage. This behavior requires a further analysis to evaluate
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the tradeoff between coverage and test suite size because this is
a key aspect when you are generating test suites [29]. We illustrate
this tradeoff for the Citizen program in Fig. 5, and in Fig. 6 for class
and transition coverage. In the figures, we show the deterministic
solution of the Greedy algorithm and the median and interquartile
range of the 30 executions of the metaheuristic algorithms in order
to capture the average behavior of the approaches. We would like
to stress that this analysis is performed on the solutions, already
computed.

Let us start with the analysis of the solution where we want to
cover all the classes (class coverage) of the Citizen program. In
Fig. 5 we show that the obtained coverage is similar for the first
test steps. The Greedy algorithm is slightly better with up to 54%
coverage. Then, both metaheuristic algorithms continue adding
coverage with the same ratio in contrast with the Greedy algo-
rithm, which is worse in the middle stage of the sequence. GTSG
obtains its maximum advantage when it achieves 80% coverage,
while ACOts only achieves 72% with the same test steps (24). When
only a few classes remain unvisited, ACOts is able to visit them in
fewer test steps. Thus, it achieves full class coverage in only 36 test
cases, three test cases less than GTSG and 11 test cases less than
the Greedy algorithm. ACOts obtains total coverage with only 64
test cases in median, meanwhile GTSG has achieved 94.12% and
the Greedy algorithm has achieved only 89.04% coverage with
the same number of test cases.

In certain regions of the graph (Fig. 5) we observe that the same
coverage is repeated in consecutive test steps. The reason is that
not every class can be reached from any other class, but requires
additional traversal of other covered classes and, therefore, addi-
tional test steps. We see this behavior, in particular, in the solution
of the Greedy algorithm for the class coverage. This implies that we
are not adding any coverage in these traversal test steps, so our
algorithm should minimize them.

In Fig. 6 we show the median transition coverage and the
interquartile range of the proposed algorithms achieved with each
test case of all test sequences (average of 30 executions of
non-deterministic algorithms). In this case, GTSG is better at the
beginning because it first explores an area with a higher density
of transitions (i.e., the algorithm does not have to visit an already
visited node to reach a non-visited node). Besides, the Greedy algo-
rithm obtains better coverage using the same number of test cases
from 12 test cases onwards, but it is not able to achieve more than
92.7% coverage. Although the Greedy algorithm has achieved
11.59% more coverage than GTSG and 10.14% more than ACOts
with 51 test cases, both metaheuristic algorithms are able to reach
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full coverage. In this case, ACOts is better because it achieves full
transition coverage in fewer test cases and it adds coverage in each
test case, progressively. This great effort in reducing traversal test
steps makes the algorithm reasonably predictable. This behavior is
desirable because the obtained coverage is proportional to the test
cases needed to reach certain levels of coverage.

For the goal of test suite minimization we have tried to optimize
the test suite sizes while still achieving high levels of coverage. We
have used GTSG and ACOts to search for the optimal solution but
we need to evaluate the minimal test suite size using an exact
approach, allowing us to know if we have reach the optimal one.
Regarding computation times, we can say that the generation
times for GTSG is less than 10 min in average, for ACOts is less than
a minute in average, while the deterministic algorithm takes
around 10 s in average. If we take into account the performance
and the quality of the obtained results, it seems that ACOts is the
best option, at least for the largest instances.
6. Threats to validity

A possible threat to internal validity is that we have not exper-
imented with all possible configuration settings for the algorithms’
parameters. However, these settings are in accordance with the
common guidelines in the literature and our previous experience
in testing problems. Parameter tuning can improve the perfor-
mance of the algorithms, although default parameters often pro-
vide reasonable results [4].

We ran our experiments on an industrial case study to seek the
best solution to minimize test suites for testing a product. To
reduce external validity threats (i.e., our results might not be appli-
cable to other empirical studies), we have used 12 case studies. The
most probable conclusion, is that validity threats in experiments
involving randomized algorithms, is due to random variations. To
address this, we repeated the experiments 30 times to reduce the
possibility that the results were obtained by chance. Furthermore,
to determine the probability of yielding higher performance by dif-
ferent algorithms, we measured the effect size using bA12 statistic
proposed by Vargha and Delaney [35]. We chose the bA12 statistic
as it is appropriate for non-parametric effect size measure, which
matches our situation. Meanwhile, we performed the Wilkoxon
test to determine the statistical significance of the results.
7. Related work

It is not the first time that an ACO-like algorithm has been
applied to a problem in the software engineering domain. Several
papers [14] have been published showing promising results using
ACO-like algorithms. These kinds of algorithms seem to be a good
choice for dealing with test sequences.

Windish has applied search-based testing to Stateflow State-
charts [38]. In his work he dealt with hierarchical structures such
as subsystems in order to reduce the complexity of the model. In
the approach the optimization sequence consisted of only a small
number of parameters to be used for the optimization engine
and to be transformed into a simulation sequence by interpolation.
However, in our work we use more complex instances of software
objects like a microwave, a watch and a coffee machine. The
technique used for test sequence generation in our work was intro-
duced by Kuhn, Kacker and Lei: they generated event sequences for
a given set of system events. Their approach is based on t-way
sequences, which includes all t-events being tested in every possi-
ble t-way order [23].

In [30] a messy Genetic Algorithm (GA) is used to generate
transition tours through Simulink Stateflow models. The authors
identify two main challenges: trigger blocks containing timing
constraints or counters and cyclic paths which may require several
traversals before triggering a transition. A further problem is the a
priori unknown length of the resulting tour. Stateflow models sup-
port hierarchies and concurrencies which they directly use to avoid
sequentialization and therefore do not suffer from state explosion.
They apply their approach to three well-known instances.

There has also been much work done on greedy algorithms for
generating test data and test sequences. In particular, Gargantini
and Riccobene [11] discuss automatic test sequence generation
and coverage criteria for testing abstract state machines. Ural
[34] describes four formal methods for generating test sequences
based on a finite-state machine (FSM) description. The question
to be answered by these test sequences is whether or not a given
system implementation conforms to the FSM model of this system.
Test sequences consisting of inputs and their expected outputs are
derived from the FSM model of the system, after which the inputs
can be fed into the real system’s implementation. Finally, the out-
puts of the model and the implementation are compared.

Geist et al. [12] divide a test problem into aspects of interest to
guide the search for test cases to interesting parts of the system,
using temporal logic and Binary Decision Diagrams (BDDs) instead
of traditional graph-algorithmic models. The target is transition
coverage. All FSM transitions are stored in a BDD for performance
reasons. Test cases are generated per transition. New test cases are
evaluated for all included transitions and removed from the list of
transitions to be covered. Their generation creates many test
sequences of medium length, so they propose, in future work, to
create longer test sequences. Heimdahl et al. [17] briefly survey a
number of approaches in which test sequences are generated using
model checking techniques. The idea is to use the counter-example
generation feature of model checkers to produce relevant test
sequences.

Techniques based on a formal specification of the software have
also been studied. Burton et al. [6] present an approach which uses
formal specification from statecharts and a testing heuristic to
automatically generate test cases. For all transitions in the state-
chart a Z-representation is extracted. The Z-representation is then
used to create an internal representation. A test sequence is then
created for each state of the internal representation. There is no
minimization of test sequences. To generate tests from Z specifica-
tions, the disjunctive normal form (DNF) method can be used,
although it is prone to state explosion. Hierons et al. [19] propose
the construction of a classification tree from the Z specification and
use the resulting tree for test generation. There are several sugges-
tions for constraint learning and efficient tree construction,
although the main manual work of test case selection is left to
the tester.

We have studied these previous techniques and we have tried
to improve upon their weaknesses and integrate their strengths,
in our work.

8. Conclusions

In this paper we have extended one CIT approach, the Classifi-
cation Tree Method by test sequence generation. We have defined
an entire model (ECTM) which both industry and academia could
use to completely describe all aspects needed to generate
sequences of tests for testing a program. Its benefits are clear, we
can save costs and time executing all test steps sequentially
because the previous test step puts the software in the adequate
state to test the next functionality.

We have presented two different metaheuristic approaches to
optimize the automatic generation of test sequences for the
Classification Tree Method. The first is a GA with memory operator
(GTSG), which is able to preserve the memory required to evaluate
individuals, while also allowing the algorithm to compute a
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solution faster than without the operator. The second is an ACO
algorithm, concretely, we propose ACOts, a variation of the ACOhg
implementation that is able to obtain good quality solutions, using
little memory.

We have also compared our results with the ones of an existing
greedy deterministic algorithm. We have used the algorithms to
find test sequences for 12 different programs extracted from the
literature. After analyzing the solutions obtained by the three
approaches, we can conclude that the metaheuristic approaches
are significantly better than the greedy deterministic approach
for the largest model of program, specially the ACOts algorithm.
The Greedy algorithm is only better than GTSG and ACOts in,
respectively, 1 and 2 out of 8 scenarios where statistical differences
exist. GSTG is statistically better than the Greedy algorithm in 4
out of 8 scenarios. Finally, ACOts is better than the Greedy algo-
rithm in 6 out of 8 scenarios where statistical differences exist.
Therefore ACOts is the best algorithm in the comparison. It has a
good tradeoff between test suite size and coverage.

Further research will focus on dealing with t-wise coverage cri-
teria with higher t (with t P 2) for test sequences. In other words,
ECTMEx1 ¼ðfVideoGame;startingGame;runningGame;startup;controlling;gameOver;running;pausedg;fGame;Playing;Pauseg;w;fstartingGame

! runningGame;startup! controlling;controlling! gameOver;running!paused;paused! runninggÞ
we need efficient algorithms able to compute pairwise class or
transition coverage that might require an exponential growth of
test sequences to fulfill a stricter coverage requirement. The
pairwise coverage will add more confidence to the testing phase.
Moreover, we need to collect more real scenarios for comparison
purposes, this is absolutely necessary when you are adding func-
tionality to a professional tool such as CTE XL. Finally, although
we have obtained great results with the ACOts algorithm, we plan
to propose a trajectory search-based algorithm such as Simulated
Annealing that has obtained great results in Combinatorial Testing
(Covering Arrays [33]) and might suit this problem.
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Appendix A. Formal definition of the Extended Classification
Tree Method

In this section we formally define the extended model of the
Classification Tree Method in order to describe all the aspects
needed to generate sequences of tests for testing an artifact. The
ECTM model can be totally defined by a tuple of four elements:

ECTM ¼ ðC;V ;w; TÞ; ðA:1Þ

where C is the set of Classes, V is the set of Classifications, w is a
word of the language LðGÞ generated by the grammar G defined next
and T is the set of allowed transitions between the classes T # C � C.
We will use either the notation cs ! cd or ðcs; cdÞ to represent a tran-
sition between classes cs and cd. The grammar G is defined as:
G ¼ ðN;R; P; SÞ ðA:2Þ

where N is the set of nonterminal symbols: N = {Class, AtomicClass,
RefinedClass, Classification}. R is the set of terminal symbols:
R = C [ V [ Punct, where Punct contains the squared brackets and
comma. P is the following set of production rules:

S ! Class

Class ! AtomicClassjRefinedClass

AtomicClass ! b 8b 2 C

RefinedClass ! b ½Classification ð;ClassificationÞ�� 8b 2 C

Classification ! ½a; c; ½Class ð;ClassÞ��� 8a 2 V ; 8c 2 C

where c in the last rule represent the initial (default) class of
classification a. S is the axiom of the grammar. The language LðGÞ
generated by the grammar represent all the possible trees that
can be build using the same set of classes and classifications.

As an illustration, the ECTM model shown in Fig. 2 can be
defined by the following quadruple:
where the word w for this example is:

w :¼VideoGame [

[Game, startingGame,

[startingGame,

runningGame [Playing, startup, [startup,

controlling]],

gameOver]],

[Pause, running, [running, paused]]]

Let us define some relations between the elements e (classes

and classifications) in the ECTM model. An element ep is parent
of ed, if ed belongs to one of the classifications or classes defined
by ep. If ep is parent of ed, then we say that ed is a child of ep. The
ascendant relation is the transitive closure of the parent relation
and the descendant relation is the transitive closure of the children
relation. In our example, the class runningGame is the parent of the
classification Playing and is also the ascendant of the classes startup
and controlling. On the other hand, Playing is child of runningGame,
meanwhile, the three elements (startup, controlling and Playing) are
descendants of runningGame.

An element es is sibling of another element es0 if they have the
same parent. For example the class startingGame is sibling of run-
ningGame and gameOver. In addition, the classification Game is sib-
ling of the classification Pause and vice versa. The initial class c of a
classification v is defined in the word w. Finally, the root class is
the first element that appears in w and it does not have a parent in the
tree (it only has descendants). From these relations we define all the
related functions that, given an element, return a set of elements:
ParentðeÞ;AscendantsðeÞ;ChildrenðeÞ;DescendantsðeÞ; SiblingsðeÞ and
InitialClassðvÞ.

The transition set in an ECTM model can contain any transition
except those connecting classes of sibling classifications. Formally,
any ECTM model must fulfill:

8v1;v2 2 V ;v1 2 Siblingsðv2Þ ) 8c1 2 Descendantsðv1Þ \ C;8c2

2 Descendantsðv2Þ \ C; ðc1; c2Þ R T:
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A valid test case for a particular ECTM model is a set of classes:

Q :¼ fc1; c2; . . . ; cng

where the classes ci must fulfill the following rules:

1. 8c 2 Q n root;AscendantsðcÞ \ C 2 Q .
2. 8c 2 Q ;8s 2 ChildrenðcÞ; 9d 2 Q ; d 2 ChildrenðsÞ.
3. 8c; b 2 Q ; c – b) b R SiblingsðcÞ.

Rule 1 says that if a class is in the test case then all the classes in
which it is included (ascendant classes) must also be in the test
case. Rule 2 requires that all the classifications under a class that
is in Q must have a class in Q. Finally, Rule 3 prevents from having
two classes of the same classification in the test case.

In order to build a sequence of test cases we must define how to
navigate from a source test case Q 1 to a destination test case Q2.
The initial test case in a sequence, Qini, is composed by the initial
classes of the children classifications under the root of the tree
and all their ascendants. Given a transition t ¼ ðcs; cdÞ 2 T , the
general rule to transit from Q1 to Q 2 is as follows. We must find
the deepest common classification of cs and cd, say va. If there
exists another common classification, then that classification must
be an ascendant of the deepest one va. Once we have found va, we
must remove from the source test case Q 1 all the classes under va,
in other words, any class that is descendant of va. Next, we have to
add cd and its ascendants which are children of va, and add the
initial classes of the classifications of these ascendants, except
the siblings of cd. If cd is a refined class, then the initial classes of
all classifications of cd and their descendants are also added in
order to build a valid test case. Let us formally define all this
procedure.

Let Q 1 be the source test case, first we must remove from Q1 the
descendants of va:

Q 0 ¼ Q 1 � DescendantsðvaÞ

where fcs; cdg# DescendantsðvaÞ and does not exist vd 2
DescendantsðvaÞ such that fcs; cdg# DescendantsðvdÞ. Then, we must
add some classes to Q 0 in order to transit to the new test case Q2. In
order to do this, let us define the function IncompleteðQÞ as follows:

IncompleteðQÞ ¼ fv 2 V jParentðvÞ 2 Q ^ 8c0 2 ChildrenðvÞ; c0 R Qg:

Then, we compute Q2 iteratively using the next pseudocode:
Q2 ¼ Q 0 [ ðAscendantsðcdÞ \ DescendantsðvaÞÞ \ C
while IncompleteðQ2Þ – ; do

Q2 ¼ Q2 [ InitialClassðIncompleteðQ2ÞÞ
end while

We define a test sequence as a sequence of test cases TS ¼ ðQiÞ

with 1 6 i 6 n, where the first test case is the initial one, that is,
Q1 ¼ Qini. Given a test sequence, the class or transition coverage
of the sequence is defined as the ratio between the visited classes
(or transitions) and all the classes (or transitions). We formally
define the coverage criteria used in this paper as follows:

ClassCoverageðsolÞ ¼
Sn

i¼1Qi

�� ��
jCj ðA:3Þ

TransitionCoverageðsolÞ ¼
Sn�1

i¼1 TransitionsðQi;Q iþ1Þ
���

���
jTj ðA:4Þ

where Transitions is defined as:

TransitionsðQ i;Q iþ1Þ ¼ ðQi � Qiþ1Þ \ T

Given an ECTM model, the objective of the TSGP is the genera-
tion of a set of test sequences that maximizes any of the coverage
criterion (one each time) defined above (class or transition).

Appendix B. Citizen watch model

Fig. B.7.
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