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Abstract Large scale continuous optimization problems

are more relevant in current benchmarks since they are

more representative of real-world problems (bioinformat-

ics, data mining, etc.). Unfortunately, the performance of

most of the available optimization algorithms deteriorates

rapidly as the dimensionality of the search space increa-

ses. In particular, particle swarm optimization is a very

simple and effective method for continuous optimization.

Nevertheless, this algorithm usually suffers from unsuc-

cessful performance on large dimension problems. In this

work, we incorporate two new mechanisms into the par-

ticle swarm optimization with the aim of enhancing its

scalability. First, a velocity modulation method is applied

in the movement of particles in order to guide them

within the region of interest. Second, a restarting mech-

anism avoids the early convergence and redirects the

particles to promising areas in the search space. Experi-

ments are carried out within the scope of this Special

Issue to test scalability. The results obtained show that

our proposal is scalable in all functions of the benchmark

used, as well as numerically very competitive with

regards to other compared optimizers.

Keywords Continuous optimization � Scalability �
Particle swarm optimization � Large scale benchmarking

1 Introduction

In the evaluation of the search capabilities of a given

optimization algorithm the usual approach is to choose a

benchmark of known problems, to perform a fixed number

of function evaluations, and to compare the results against

the ones of other algorithms in the state of art. However,

while some real industry problems can have hundreds and

thousands of variables, current benchmarks are normally

adopted with less than a hundred decision variables (see

CEC’05, Suganthan et al. 2005; BBOB’09, Hansen et al.

2009; BBOB’10, Hansen et al. 2010 test beds). Large scale

continuous optimization problems have attracted more and

more interest (CEC’08, Tang et al. 2007; ISDA’09, Herrera

and Lozano 2009; CEC’10, Tang et al. 2010) since they

introduce a high complexity to the optimization process.

Issues like the exponential increment of the solution space,

as well as the change that some problems suffer from their

own characteristics with the scale, can deteriorate quickly

the performance of our optimization algorithms (Shang and

Qiu 2006). This way, we can study certain mechanisms that

show the best performance in short scale optimization

problems, which is the case of the covariance matrix in

G-CMA-ES (Auger and Hansen 2005), but with an

unsuitable behavior for high dimensional functions (more

than 100 variables). A different performance can be

observed in simple algorithms like MTS (Tseng and Chen

2008), which combines several local search strategies using

a small population. MTS was the best in the special session

of large scale optimization of CEC’08 (Tang et al. 2007),

where functions with thousands of variables were tackled.
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All this motivates us to deeply analyze the scalable

capacities of optimization algorithms. In particular, particle

swarm optimization (PSO) (Kennedy and Eberhart 2001) is

a very simple and effective method for continuous opti-

mization. Nevertheless, this algorithm is characterized by

an early convergence behavior, mainly produced by the

overinfluenced best solution and its relative facility to fall

in local optima (Liang et al. 2006; van den Bergh and

Engelbrecht 2004). For this reason, PSO usually suffers

from an unsuccessful performance on large dimension

problems.

In this work, we have incorporated two mechanisms to

the PSO with the aim of enhancing its scalability. First, a

velocity modulation method is applied in the movement of

particles in order to guide them within the feasible region.

Second, a restarting mechanism avoids the early conver-

gence and redirects the particles to promising areas in the

search space. To evaluate the scalability of the resulting

approach, we have followed the experimental framework

proposed in this Special Issue on Scalability of Evolu-

tionary Algorithms and other Metaheuristics for Large

Scale Continuous Optimization Problems (in URL

http://www.sci2s.ugr.es/eamhco/CFP.php). We also stud-

ied the influence of both velocity modulation and restarting

mechanisms to show real insights of the improvement of

our proposal, called Restart PSO with Velocity Modulation

(RPSO-vm), regarding the basic PSO. The results obtained

confirm us that RPSO-vm is scalable in all functions of the

benchmark used, as well as highly competitive in com-

parison with PSO and other well-known efficient

optimizers.

The remaining of this paper is organized as follows. The

next section presents basic preliminary concepts. In

Sect. 3, the RPSO-vm algorithm is introduced. Section 4

describes the experimentation procedure with the bench-

mark of functions and the parameter settings. In Sect. 5,

experimental results are reported with comparisons, anal-

yses, and discussions. Finally, concluding remarks are

given in Sect. 6.

2 Preliminaries

Particle swarm optimization (Montes de Oca et al. 2009;

Kennedy and Eberhart 2001) has been successfully used

in many problems of real parameter optimization (Das

et al. 2008; Garcı́a-Nieto et al. 2009; Hsieh et al. 2008;

Liang et al. 2006; Liang and Suganthan 2005) since it is

a well adapted algorithm for continuous solution

encoding. Basically, a continuous optimization problem

consists of:

find x� such that 8 xf ðx�Þ� f ðxÞ (minimization):

Here, f(.) is a function in a real space domain that models

an optimization problem, x ¼ fx1; x2; . . .; xDIMg is a solu-

tion for such problem, and DIM is the number of variables

with xi 2 ½xlow; xupp� (1� i�DIM). Finally, xlow; xupp 2 R

correspond to lower (low) and upper (upp) limits of the

variable domain, respectively.

In PSO, each potential solution to the problem is given

by a particle position and the population of particles is

called swarm. In this algorithm, each particle position xi is

updated each generation t by means of Eq. 1.

xiðt þ 1Þ  xi þ viðt þ 1Þ ð1Þ

where factor viðt þ 1Þ is the velocity of the particle and is

given by

viðt þ 1Þ  viðtÞ þ u1 � UNð0; 1Þ � ðpiðtÞ � xiðtÞÞ
þ u2 � UNð0; 1Þ � ðbiðtÞ � xiðtÞÞ

ð2Þ

In this formula, piðtÞ is the personal best solution that

the particle i has stored so far, biðtÞ is the global best

particle (leader) that the entire swarm has ever generated.

Finally, u1 and u2 are specific parameters which control

the relative effect of the personal and global best

particles, and UN(0,1) is a uniform random value in

[0,1] which is sampled anew for each component of the

velocity vector.

Velocity constriction is one of the main mechanisms

used for controlling the movement of particles through the

search space and for balancing the exploration-exploitation

trade-off of the algorithm. Therefore, an efficient move-

ment strategy of particles could help the PSO to find an

optimum even in large scale problems. We can find several

velocity constriction mechanisms in the literature. Three of

the most popular are the following ones:

• VMAX factor. The simplest method for regulating the

velocity lies in the maximum (and minimum) veloc-

ity delimitation. This mechanism uses a given value

Vmax for adjusting the maximum velocity each

particle undergoes each generation step. According

to this method, if the new velocity exceeds Vmax then

this value is aggregated to the new position calcu-

lation (Eq. 1) instead of the corresponding new

velocity.

• Inertia weight (x) (Shi and Eberhart 1998; Suresh et al.

2008) is one of the most used methods in PSO for

controlling the velocity of particles in their movement.

This parameter controls the trade-off between global

and local search. Then, a high inertia value provides the

algorithm with exploration capability and a low inertia
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promotes the exploitation. The inertia weight linearly

changes during the optimization process (of the algo-

rithm) by using the following equation:

x xmax �
ðxmax � xminÞ �#gcurrent

#gtotal

ð3Þ

This way, at the beginning of the process a high inertia

(xmax) value is introduced (for exploration) which

decreases until reaching the lowest value (xmin). The

inertia value is incorporated in the velocity calculation

as follows:

viðt þ 1Þ  x � viðtÞ þ u1 � UNð0; 1Þ � ðpiðtÞ � xiðtÞÞ
þ u2 � UNð0; 1Þ � ðbiðtÞ � xiðtÞÞ ð4Þ

• A third velocity constriction method was introduced in

(Clerc and Kennedy 2003). In that work, the author

indicates that the use of a constriction factor (v) may be

necessary to ensure convergence of the particle swarm

algorithm. A detailed discussion of the constriction

factor is beyond the scope of this work in (Clerc and

Kennedy 2003), but a simplified method of

incorporating it appears in Eq. 5, where v is a

function of u1 and u2 as reflected in Eq. 6.

viðt þ 1Þ  v½viðtÞ þ u1 � UNð0; 1Þ � ðpiðtÞ � xiðtÞÞ
þ u2 � UNð0; 1Þ � ðbiðtÞ � xiðtÞÞ� ð5Þ

v ¼ 2

2� u�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � 4u
p

�

�

�

�

�

�

;u ¼ u1 þ u2;u[ 4 ð6Þ

3 The algorithm

Our proposal, RPSO-vm, consists in running a PSO algo-

rithm in which we have incorporated two main ideas:

velocity modulation and restarting mechanisms.

Using the velocity modulation, the algorithm controls

that the overall movement calculated in each evolution step

and for each particle position does not exceed the limits

(xlow, xupp) of the problem domain. First, after calculating

the new velocity value (v j
aux) RPSO-vm performs a mod-

ulation procedure as shown in Algorithm 1. The velocity

vector magnitude (v̂iðtÞ) is then bounded, which limits the

given particle to move far from the interest area. These

steps are calculated in Algorithm 2 in lines 7 and 8. Sec-

ond, once obtained the new velocity v j
i ðt þ 1Þ; the overall

movement is calculated, also controlling that the new

particle position (xaux
j ) does not exceed the problem limits.

If this happens, the new position is recalculated by sub-

tracting the new velocity to the old particle position (lines

10–14 in Algorithm 2).

A second phase of RPSO-vm concerns the restarting

strategy. Similar to other known algorithms like CHC

(Eshelman 1991) and G-CMA-ES (Auger and Hansen

2005), our proposal is stopped whenever one stopping

criterion described below is met, and a restart is launched.

The decision on when to restart the algorithm is made

according to two independent criteria:

1. Stop if the standard deviation of the fitness values of

particles in the entire swarm is smaller than 1e - 3. In

this case, the particles are restarted by randomly

initializing their positions with a probability of 1/DIM

(lines 18–26 in Algorithm 2).

2. Stop if the overall change in the objective function

value is below 1e - 8 for 10 � DIM=sizeðSÞ gener-

ations. In this case, the particles are restarted by

calculating their derivatives to the global best

position b and dividing them into two (lines

27–33 in Algorithm 2). This way, we force the

particles to go to the best but avoiding the global

convergence.

Applying the first restarting criteria, our algorithm tries

to mitigate the early stagnation that basic PSO usually

suffers from, especially in multimodal functions. In spite

of working with high inertia and/or high social influences

(u1 and u2), which moves the particles to distant posi-

tions, the PSO tends to be easily trapped in unproductive

regions. This drawback is specially sensitive in functions

with multiple local optima such as Rastriging and its

hybrids.

The second restarting criterion is based on the existence

of plateaus and quite regular regions in functions like

Rosenbrock, Schwefel, and their hybrids that make the

PSO to spend a number of function evaluations (with time

and computing resources) without an effective improve-

ment. In this case, particles tend to spread them in the

search space avoiding the influence of the best particle.

Therefore, after a certain number of function evaluations

without improvement, the particles are moved to their

derivatives with regard to the best position.

Restart particle swarm optimization with velocity modulation 2223
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Algorithm 2 shows the complete pseudo-code of the

RPSO-vm algorithm developed for this work. First, an

initialization process of all particles in the swarm S is

carried out. After this, each evolution step the particle’s

positions are updated following the velocity variation

model of the equations previously explained (lines 5–16).

If stopping criteria are reached, the algorithm restarts

modifying the particles, excepting for the best one (lines

18–33). Finally, the algorithm returns the best solution

found during the whole process.

4 Experimental setup

In this section, we present the experimental methodology

and statistical procedure followed to evaluate and to

compare our proposal. This experimentation has been

defined in the scope of the Special Issue on Scalability of

Evolutionary Algorithms and other Metaheuristics for

Large Scale Continuous Optimization Problems

(SOCO’10), available in URL http://www.sci2s.ugr.es/

eamhco/CFP.php.

We have implemented our RPSO-vm in C?? using the

MALLBA library (Alba et al. 2007), a framework of

metaheuristics. The benchmark of functions was tackled

including the C-code provided in this special issue to our

implementation of RPSO-vm. A complete package of this

software is available in the new version release of MAL-

LBA1 Following the specifications of the SOCO’10

experimental procedure, we have performed 25 indepen-

dent runs of RPSO-vm for each test function and dimen-

sion. The study has been made with dimension D = 50,

100, 200, 500, and 1,000 continuous variables. The mea-

sures provided are the Average, the Maximum, the Mini-

mum, and the Median of error of the best individuals found

in the 25 runs. For a solution x, the error measure is defined

as: f ðxÞ � f �; where f � is the optimum fitness of the

function. The maximum number of fitness evaluations has

been stated to 5;000 � D; which constitutes the stop con-

dition of each run.

To analyze the results we have used non-parametric

(Sheskin 2003) tests. These tests use the mean ranking of

each algorithm. We have applied them since several times

the functions might not follow the conditions of normality

and homoscedasticity to apply parametric tests with secu-

rity (Garcı́a et al. 2009). In particular, we have considered

the application of the Iman and Davenport test, and Holm’s

test as post-hoc procedure. The former is used to know

beforehand if there are statistically relevant differences in

compared algorithms. In that case, a post-hoc procedure,

the Holm’s test, is then employed to know which algo-

rithms are statistically worse than the reference algorithm

with the best ranking.

4.1 Benchmark functions

The test suite elaborated for this Special Issue is composed

by 19 functions with different properties (Herrera et al.

2010): unimodal, multimodal, separable, non-separable,

shifted, and hybrid composed. Functions f1 to f6 were

defined for CEC’08 (Tang et al. 2007) and functions

f7–f11 were defined for ISDA’09 (Herrera and Lozano

2009) (and shifted for SOCO’10), where the previous ones

were also used. Finally, functions f12–f19 have been cre-

ated specifically for this Special Issue. Table 1 shows their

names, bounds, and optimum values. We can describe

several properties of the functions that we consider

interesting.

1 MALLBA Library http://www.neo.lcc.uma.es/mallba/easy-mallba/

html/mallba.html. Directory Mallba/rep/PSO/soco2010.
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• Functions f1 and f2 are shifted unimodal, functions f3–

f6 are shifted multimodal and functions f7–f11 are

shifted unimodal.

• Functions f2, f3, f5, f9, and f10 are non-separable. That

is specially interesting to analyze if our proposal

obtains good results in non-separable functions since

we can observe its capacity of managing correlated

variables, a typical property in real world problems.

• Functions f12–f19 are hybrid composition functions.

They have been generated by composing (�) two

functions, one or both of them non-separable. For these

compositions, functions f7–f11 have been used in their

non-shifted versions (NS). A composition uses a

splitting mechanism to graduate the proportion (in

parentheses in Table 1) of non-separable variables in

the complete search space.

4.2 Parameter settings

Table 2 shows the parameter settings used to configure our

proposal, RPSO-vm. These parameters were tuned in the

context of the ISDA’09 special session of real parameter

optimization (Herrera and Lozano 2009) reaching results

statistically similar to the best participant algorithm in that

special session. These values of parameters were kept the

same for all the experiments. The inertia weight changes

linearly by following Eq. 3.

5 Analysis of results

In this section, the results are presented and several anal-

yses are made as follows: first, we carry out a brief analysis

of the performance of our proposal in terms of the

improvement obtained by both, velocity modulation and

restarting mechanisms. In this sense, an additional com-

parison is made concerning the neighborhood topology of

RPSO-vm in terms of global best versus local best guid-

ance of particles. Second, the scalability analysis is tacked

in comparison with provided results of other algorithms

(DE, CHC, and G-CMA-ES) for all dimensions.

Finally, we present the computational effort required in

terms of average running time.

5.1 RPSO-vm performance results

As specified in benchmarking requirements of this Special

Issue, we show in Table 3 the average, the maximum, the

minimum, and the median of the best error values found in

25 independent runs of our RPSO-vm, for each function

and for each dimension. In this table, we have marked in

bold face the average error values since they will be used in

advance for comparisons (as recommended in this test

bed). Nevertheless, we can notice that median values are

frequently better than average values, especially in shifted

Extended_f10 (f9) and several hybrid functions (f14, f16

and f17) where the distribution of results are scattered.

A first analysis consists of studying the improvement

obtained by RPSO-vm with regards to basic PSO algo-

rithm. Table 4 shows the mean errors (in 25 runs) obtained

by RPSO-vm in comparison with the ones of PSO only

with restarting (RPSO), PSO only with velocity modulation

(PSO-vm), and the basic PSO. Additionally, we have

included to this comparison the standard version of PSO

(SPSO 2007) consisting of the best PSO. This version uses

a variable random topology for selecting the best neighbor

(b) for each particle (Ghosh et al. 2009). The resulting

algorithm (lb)RPSO-vm incorporates both, modulation

velocity and restart mechanisms in order to obtain an as fair

as possible comparison. For this specific analysis, we have

only focused on 1,000 variables dimension since it allows

the most interesting analysis.

Table 1 SOCO’10 test suite of functions

Number Name Intervals f*

f1 Shifted Sphere [-100, 100] -450

f2 Shifted Schwefel 2.21 [-100, 100] -450

f3 Shifted Rosenbrock [-100, 100] 390

f4 Shifted Rastrigin [-5, 5] -330

f5 Shifted Griewank [-600, 600] -180

f6 Shifted Ackley [-32, 32] -140

f7 Shifted Schwefel 2.22 [-10, 10] 0

f8 Shifted Schwefel 1.2 [-65.536, 65.536] 0

f9 Shifted Extended f10 [-100, 100] 0

f10 Shifted Bohachevsky [-15, 15] 0

f11 Shifted Schaffer [-100, 100] 0

f12 Hybrid NS f9�f1 (0.25) [-100, 100] 0

f13 Hybrid NS f9�f3 (0.25) [-100, 100] 0

f14 Hybrid NS f9�f4 (0.25) [-5, 5] 0

f15 Hybrid NS f10�NS f7 (0.25) [-10, 10] 0

f16 Hybrid NS f9�f1 (0.50) [-100, 100] 0

f17 Hybrid NS f9�f3 (0.75) [-100, 100] 0

f18 Hybrid NS f9�f4 (0.75) [-5, 5] 0

f19 Hybrid NS f10�NS f7 (0.75) [-10, 10] 0

Table 2 Parameter setting used in RPSO-vm

Description Parameter Value

Swarm size size (S) 10

Inertia weight x 0:0 0:1

Individual coefficient u1 1.5

Social coefficient u2 1.5
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As we can see in Table 4, RPSO-vm obtains the higher

number of best error values (15 out of 19 in bold), and

followed by RPSO. The other versions are clearly worse

than the formers. In addition, after applying the Iman-

Davenport test to see whether there are significant

differences between them we obtained a test value of 166.07

with a critical value of 3.77 (with a = 0.05), which proves

that there is an evident improvement of RPSO-vm over PSO.

More precisely, Table 5 contains the results of a mul-

ticomparison Holm test where we can see that RPSO-vm is

Table 3 Maximum, minimum, median, and mean errors obtained by RePSOVM for all dimensions

Dimension Value f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

50 Maximum 2.84E–14 1.58E–02 1.86E?04 2.84E–14 3.20E–01 1.78E–11 1.78E–14 2.13E?03 6.77E?00 0.00E?00

Median 2.68E–14 6.60E–03 1.90E?01 2.66E–14 7.36E–02 2.66E–13 0.00E?00 1.04E?03 3.12E–06 0.00E?00

Minimum 1.87E–14 4.36E–03 5.21E–02 0.00E?00 0.00E?00 1.24E–13 0.00E?00 4.37E?02 0.00E?00 0.00E?00

Mean 2.62E–14 7.54E–03 1.75E103 2.30E–14 9.53E–02 1.49E–12 1.14E–15 1.06E103 2.94E–01 0.00E100

100 Maximum 2.84E–14 2.92E–01 9.65E?03 2.84E–14 3.18E–01 9.52E–11 0.00E?00 1.89E?04 2.80E?00 0.00E?00

Median 2.80E–14 2.01E–01 1.19E?02 2.77E–14 8.80E–02 6.32E–13 0.00E?00 1.05E?04 2.58E–05 0.00E?00

Minimum 1.57E–14 1.17E–01 3.57E–01 1.17E–14 1.31E–14 2.42E–13 0.00E?00 6.82E?03 5.93E–07 0.00E?00

Mean 2.66E–14 1.98E–01 1.42E103 2.61E–14 1.07E–01 4.76E–12 0.00E100 1.09E104 1.85E–01 0.00E100

200 Maximum 2.84E–14 2.49E?00 6.60E?03 2.84E–14 7.74E–01 8.20E–12 0.00E?00 7.06E?04 2.51E?01 0.00E?00

Median 2.75E–14 2.01E?00 6.80E?01 2.74E–14 1.18E–01 1.89E–12 0.00E?00 5.05E?04 1.48E–03 0.00E?00

Minimum 0.00E?00 1.65E?00 8.75E–02 0.00E?00 1.35E–14 6.96E–13 0.00E?00 3.81E?04 1.35E–06 0.00E?00

Mean 2.53E–14 2.00E100 1.03E103 2.43E–14 1.73E–01 2.95E–12 0.00E100 5.23E104 1.67E100 0.00E100

500 Maximum 2.84E–14 1.81E?01 1.47E?04 2.84E–14 6.01E–01 7.01E–12 1.13E–14 3.62E?05 2.28E?01 0.00E?00

Median 2.82E–14 1.71E?01 1.38E?02 2.77E–14 2.52E–01 2.59E–12 0.00E?00 3.00E?05 1.81E?00 0.00E?00

Minimum 1.73E–14 1.49E?01 2.70E–02 0.00E?00 1.42E–14 1.21E–12 0.00E?00 2.47E?05 1.90E–03 0.00E?00

Mean 2.65E–14 1.67E101 1.13E103 2.44E–14 2.54E–01 3.14E–12 0.00E100 3.00E105 4.85E100 0.00E100

1,000 Maximum 2.84E–14 4.69E?01 2.07E?03 3.03E–13 8.68E–01 2.41E–11 1.55E–14 1.14E?06 3.17E?01 0.00E?00

Median 2.82E–14 4.29E?01 1.37E?02 2.78E–14 1.12E–01 3.75E–12 0.00E?00 9.21E?05 9.84E?00 0.00E?00

Minimum 2.07E–14 3.99E?01 1.85E?01 2.27E–14 1.22E–14 2.60E–12 0.00E?00 7.39E?05 6.45E–02 0.00E?00

Mean 2.72E–14 4.29E101 3.21E102 4.81E–14 2.14E–01 4.92E–12 0.00E100 9.35E105 1.17E101 0.00E100

Dimension Value f11 f12 f13 f14 f15 f16 f17 f18 f19

50 Maximum 3.07E–01 2.14E?00 1.49E?04 1.04E?00 0.00E?00 1.05E–09 9.08E?03 1.26E?00 0.00E?00

Median 3.84E–06 0.00E?00 1.43E?01 1.72E–14 0.00E?00 1.68E–11 5.06E?01 3.18E–09 0.00E?00

Minimum 0.00E?00 0.00E?00 2.67E–02 0.00E?00 0.00E?00 2.20E–12 9.41E–01 4.60E–10 0.00E?00

Mean 1.68E–02 8.58E–02 6.57E102 6.81E–02 0.00E100 7.88E–11 8.73E102 5.05E–02 0.00E100

100 Maximum 3.83E?00 2.30E–13 2.56E?04 1.20E?00 0.00E?00 1.11E–06 3.56E?04 1.61E?00 0.00E?00

Median 1.84E–05 0.00E?00 1.06E?02 4.38E–14 0.00E?00 4.64E–10 1.51E?02 5.04E–08 0.00E?00

Minimum 2.58E–08 0.00E?00 5.36E–02 0.00E?00 0.00E?00 5.17E–12 1.71E–01 1.46E–09 0.00E?00

Mean 4.61E–01 1.60E–14 2.25E103 1.27E–01 0.00E100 4.87E–08 1.76E103 1.36E–01 0.00E100

200 Maximum 3.73E?00 1.16E?00 1.23E?05 9.95E–01 0.00E?00 1.29E?01 2.40E?05 3.73E?00 0.00E?00

Median 5.47E–02 2.79E–14 1.48E?02 3.23E–12 0.00E?00 1.02E–09 2.77E?02 2.60E–08 0.00E?00

Minimum 4.37E–05 0.00E?00 7.56E–01 1.50E–14 0.00E?00 5.35E–11 1.31E–01 3.33E–09 0.00E?00

Mean 5.66E–01 4.64E–02 1.17E104 7.96E–02 0.00E100 5.40E–01 2.08E104 1.50E–01 0.00E100

500 Maximum 1.56E?01 2.98E–07 1.79E?04 1.36E?01 0.00E?00 3.04E?01 8.31E?03 1.41E?01 0.00E?00

Median 3.95E?00 2.75E–13 7.20E?01 2.50E–11 0.00E?00 3.46E–08 2.16E?01 7.80E–01 0.00E?00

Minimum 1.70E–03 0.00E?00 2.74E–01 2.05E–13 0.00E?00 6.84E–10 7.85E–01 1.44E–08 0.00E?00

Mean 4.88E100 1.32E–08 1.33E103 1.29E100 0.00E100 2.12E100 5.72E102 2.47E100 0.00E100

1,000 Maximum 3.67E?01 1.16E–08 2.78E?04 2.60E?00 0.00E?00 7.53E?00 3.28E?04 6.52E?00 0.00E?00

Median 9.61E?00 2.02E–12 2.27E?02 4.07E–08 0.00E?00 2.19E–06 4.02E?01 1.33E?00 0.00E?00

Minimum 7.67E–02 2.98E–14 4.16E?01 5.39E–13 0.00E?00 6.27E–09 1.79E?00 2.93E–07 0.00E?00

Mean 1.10E101 1.00E–09 1.93E103 5.27E–01 0.00E100 9.50E–01 2.82E103 1.80E100 0.00E100
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statistically better than all PSO versions, excepting RPSO.

In this case, RPSO-vm obtained a better ranking than

RPSO but without significant differences. Therefore, the

main consequence is that velocity modulation (PSO-vm)

can improve the performance of basic PSO, although it is

in the case of PSO with restarting method (RPSO) where a

significant improvement is obtained. In the case of

(lb)RPSO-vm, we suspect that the fact of using the same

parameter setting specifically fine-tuned for RPSO-vm

(global best) could lead this version of PSO to perform

inadequately in our experiments.

These preliminary results lead us to definitively use

both, the velocity modulation and the restarting method to

design our proposed PSO for large scale optimization

(RPSO-vm).

5.2 Scalability analysis

This section is focused on analyzing the capability of our

RPSO-vm to scale with the dimension of the search space

of each function. As proposed in this Special Issue, the

scalability study is made in comparison with other well-

known algorithms in the state of the art. These algorithms

are a version of DE (DE/1/exp) (Price et al. 2005), CHC

(Eshelman 1991), and G-CMA-ES (Auger and Hansen

2005). The descriptions and the parameter settings of these

algorithms can be found in (Herrera et al. 2010). Therefore,

we first analyze the results of RPSO-vm dimension by

dimension, and secondly, we made a brief study from a

general point of view of the scalability behavior of RPSO-

vm regarding several selected functions (f2, f9, f14, and

f19) of the SOCO’10 benchmark.

An initial study with all these results consists of

applying an Iman-Davenport test to see if there exist sig-

nificant differences between them for all considered

dimensions. Table 6 shows the results of this test, where

we can effectively notice that there are statistical differ-

ences in compared results. In fact, for almost all cases the

test values (ID value) increase with the dimension, which

means that there are higher differences between compared

algorithms in large scales (500 and 1,000) than in small

dimensions (50, 100 and 200). Hence, we can known

beforehand that there is an algorithm with poor scalability

behavior, at least.

Following this general point of view, Table 7 shows the

results of applying a multicomparison Holm’s test to all

mean fitness values obtained by each algorithm for each

dimension. We must notice that G-CMA-ES could not

obtained any result for dimension 1,000 (Table 12), hence

it has not been considered for comparisons regarding the

largest scale.

The main observation we can draw from Table 7 is that

there are two algorithms: DE, and RPSO-vm that clearly

show a better average distribution than the remaining ones.

In addition, these ranks are kept for all dimensions. Con-

cretely, DE reached the best rank and for this reason it has

been considered as the reference algorithm for this

Table 4 Mean errors obtained by RPSO-vm, RPSO, PSO-vm, and

PSO for dimension 1,000

F/D RPSO-vm RPSO PSO-vm PSO (lb)RPSO-vm

f1 2.72E–14 2.69E–14 5.61E?06 5.55E?06 6.31E?06

f2 4.29E101 4.38E?01 1.72E?02 1.72E?02 1.89E?02

f3 3.21E102 1.26E?04 5.43E?12 5.54E?12 7.65E?12

f4 4.81E–14 3.98E–02 2.32E?04 2.32E?04 2.56E?04

f5 2.14E–01 1.77E–01 4.98E?04 5.05E?04 5.65E?04

f6 4.92E–12 5.13E–12 2.14E?01 2.14E?01 2.15E?01

f7 0.00E100 2.00E–14 4.93E?03 4.98E?03 3.34E?27

f8 9.35E105 9.38E?05 2.03E?07 2.53E?07 8.33E?07

f9 1.17E101 1.34E?01 1.20E?04 1.20E?04 1.28E?04

f10 0.00E100 0.00E100 2.16E?05 2.16E?05 2.57E?05

f11 1.10E101 1.33E?01 1.20E?04 1.20E?04 1.28E?04

f12 1.00E–09 1.15E–01 4.20E?06 4.18E?06 4.73E?06

f13 1.93E?03 7.38E102 4.13E?12 4.01E?12 5.86E?12

f14 5.27E–01 6.28E–01 1.76E?04 1.78E?04 1.96E?04

f15 0.00E100 0.00E100 3.81E?04 3.67E?04 5.37E?18

f16 9.50E–01 7.39E–01 2.67E?06 2.70E?06 3.14E?06

f17 2.82E103 1.42E?04 9.53E?11 9.33E?11 1.64E?12

f18 1.80E100 3.35E?00 7.20E?03 7.20E?03 8.29E?03

f19 0.00E100 0.00E100 1.14E?05 1.11E?05 6.59E?12

Table 5 Comparison of RPSO-vm versus (lb)RPSO-vm, RPSO,

PSO-vm, and PSO according to Holm’s multicompare test (a = 0.05)

i Algorithm z p value a/i Sig.

dif?

4 (lb)RPSO-vm 7.02 2.09E–12 0.012 Yes

3 PSO 4.10 4.06E–05 0.016 Yes

2 PSO-vm 4.10 4.06E–05 0.025 Yes

1 RPSO 0.41 6.81E–01 0.050 No

Table 6 Results of the Iman-Davenport’s (ID) test of RPSO-vm and

all compared algorithms for each dimension (a = 0.05)

Dimension ID value Critical value Sig. dif?

50 13.80 2.53 Yes

100 13.43 2.53 Yes

200 12.76 2.53 Yes

500 14.37 2.53 Yes

1,000 30.04 2.84 Yes
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statistical test. Nevertheless, our RPSO-vm is the only

algorithm that does not shown significant statistical dif-

ferences (sig. dif) with regard to DE (the reference), and

resulting the lower difference precisely in the largest

dimension (1,000 variables). This is an important indicator

that confirms us the successful performance of our proposal

in terms of scalability.

The following Tables 8, 9, 10, 11 and 12 contain the

results of all compared algorithms for dimensions, 50, 100,

200, 500, and 1,000, respectively. The last column in these

tables shows the results of RPSO-vm, indicating in bold

face such values for which the mean error is the best found.

A detailed study leads us to analyze the results dimension

by dimension in the following.

5.2.1 Dimension 50

Table 8 shows mean errors (of 25 runs) obtained by DE,

CHC, G-CMA-ES, and RPSO-vm for dimension 50. In this

case, DE obtained the best results in 13 functions, 7 of

them in hybrid composition functions.

RPSO-vm obtained the best results in 7 functions, and

G-CMA-ES obtained the best results in three functions.

The Holm’s test with a = 0.05 (Table 7) showed

that DE, the algorithm with best ranking is statistically

better than all algorithms, excepting RPSO-vm with

p value=0.05.

Table 7 Comparison of DE versus RPSO-vm, CHC, and G-CMA-ES

according to Holm’s multicompare test (a = 0.05)

DIM i Algorithm z p value a/i Sig.

dif?

50 3 CHC 4.77 1.79E–06 0.016 Yes

2 G-CMA-

ES

2.95 3.14E–03 0.025 Yes

1 RPSO-
vm

1.57 1.16E–01 0.050 No

100 3 CHC 4.71 2.45E–06 0.016 Yes

2 G-CMA-

ES

2.89 3.85E–03 0.025 Yes

1 RPSO-
vm

1.44 1.48E–01 0.050 No

200 3 CHC 4.649 3.33E–06 0.016 Yes

2 G-CMA-

ES

2.76 5.70E–03 0.025 Yes

1 RPSO-
vm

1.38 1.66E–01 0.050 No

500 3 CHC 4.52 6.07E–06 0.016 Yes

2 G-CMA-

ES

3.70 2.09E–04 0.025 Yes

1 RPSO-
vm

1.57 1.16E–01 0.050 No

1,000 2 CHC 4.62 3.77E–06 0.025 Yes

1 RPSO-
vm

0.97 3.30E–01 0.050 No

Table 8 Mean errors obtained by DE, CHC, G-CMA-ES, and RPSO-vm

for dimension 50

f/Alg. DE CHC G-CMA-ES RPSO-vm

f1 0.00E100 1.67E–11 0.00E?00 2.62E–14

f2 3.60E–01 6.19E?01 2.75E–11 7.54E–03

f3 2.89E?01 1.25E?06 7.97E–01 1.75E?03

f4 3.98E–02 7.43E?01 1.05E?02 2.30E–14

f5 0.00E100 1.67E–03 2.96E–04 9.53E–02

f6 1.43E–13 6.15E–07 2.09E?01 1.49E–12

f7 0.00E100 2.66E–09 1.01E–10 0.00E100

f8 3.44E?00 2.24E?02 0.00E100 1.06E?03

f9 2.73E?02 3.10E?02 1.66E?01 2.94E–01

f10 0.00E100 7.30E?00 6.81E?00 0.00E100

f11 6.23E–05 2.16E?00 3.01E?01 1.68E–02

f12 5.35E–13 9.57E–01 1.88E?02 8.58E–02

f13 2.45E101 2.08E?06 1.97E?02 6.57E?02

f14 4.16E–08 6.17E?01 1.09E?02 6.81E–02

f15 0.00E100 3.98E–01 9.79E–04 0.00E100

f16 1.56E–09 2.95E–09 4.27E?02 7.88E–11

f17 7.98E–01 2.26E?04 6.89E?02 8.73E?02

f18 1.22E–04 1.58E?01 1.31E?02 5.05E–02

f19 0.00E100 3.59E?02 4.76E?00 0.00E100

Table 9 Mean errors obtained by DE, CHC, G-CMA-ES, and RPSO-vm

for dimension 100

f/Alg. DE CHC G-CMA-ES RPSO-vm

f1 0.00E100 3.56E–11 0.00E?00 2.66E–14

f2 4.45E?00 8.58E?01 1.51E–10 1.98E–01

f3 8.01E?01 4.19E?06 3.88E100 1.42E?03

f4 7.96E–02 2.19E?02 2.50E?02 2.61E–14

f5 0.00E100 3.83E–03 1.58E–03 1.07E–01

f6 3.10E–13 4.10E–07 2.12E?01 4.76E–12

f7 0.00E100 1.40E–02 4.22E–04 0.00E100

f8 3.69E?02 1.69E?03 0.00E100 1.09E?04

f9 5.06E?02 5.86E?02 1.02E?02 1.85E–01

f10 0.00E100 3.30E?01 1.66E?01 0.00E100

f11 1.28E–04 7.32E?01 1.64E?02 4.61E–01

f12 5.99E–11 1.03E?01 4.17E?02 1.60E–14

f13 6.17E101 2.70E?06 4.21E?02 2.25E?03

f14 4.79E–02 1.66E?02 2.55E?02 1.27E–01

f15 0.00E100 8.13E?00 6.30E–01 0.00E100

f16 3.58E–09 2.23E?01 8.59E?02 4.87E–08

f17 1.23E101 1.47E?05 1.51E?03 1.76E?03

f18 2.98E–04 7.00E?01 3.07E?02 1.36E–01

f19 0.00E100 5.45E?02 2.02E?01 0.00E100
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5.2.2 Dimension 100

In this case, in spite of reaching DE the best mean error in

more functions than RPSO-vm and G-CMA-ES (see

Table 9), both Friedman’s and Holm’s test showed similar

results to dimension 50. That is, RPSO-vm and DE are

statistically similar to themselves, but better than CHC, and

G-CMA-ES.

5.2.3 Dimension 200

As shown in Table 10, the results are quite similar to the

previous ones of dimension 100. In fact, the same algo-

rithms (RPSO-vm, DE, and G-CMA-ES) obtained the best

mean errors practically in the same functions. Holm’s test

also obtained that DE is statistically similar to RPSO-vm

(p value = 0.05), and better than the rest of algorithms.

5.2.4 Dimension 500

Table 11 contains the mean errors of all algorithms in

dimension 500. We can see the set functions for which

RPSO-vm always obtained the best mean fitness: f4, f7, f9,

f10, f15, and f19. In particular Shifted Schwefel 2.22 (f7)

and its hybrids (f15 and f19) are optimized for all dimen-

sions. These functions are unimodal separable (f7) and

unimodal non-separable (f9, f10, f15, and 19) which could

lead us to think that RPSO-vm only has successful

performance with unimodal functions, but we can easily

check that our proposal obtained the best results for f4

(multimodal), and for all dimensions. In addition, RPSO-

Table 10 Mean errors obtained by DE, CHC, G-CMA-ES, and

RPSO-vm for dimension 200

f/Alg. DE CHC G-CMA-ES RPSO-vm

f1 0.00E100 8.34E–01 0.00E?00 2.53E–14

f2 1.92E?01 1.03E?02 1.16E–09 2.00E?00

f3 1.78E?02 2.01E?07 8.91E101 1.03E?03

f4 1.27E–01 5.40E?02 6.48E?02 2.43E–14

f5 0.00E100 8.76E–03 0.00E100 1.73E–01

f6 6.54E–13 1.23E?00 2.14E?01 2.95E–12

f7 0.00E100 2.59E–01 1.17E–01 0.00E100

f8 5.53E?03 9.38E?03 0.00E100 5.23E?04

f9 1.01E?03 1.19E?03 3.75E?02 1.67E100

f10 0.00E100 7.13E?01 4.43E?01 0.00E100

f11 2.62E–04 3.85E?02 8.03E?02 5.66E–01

f12 9.76E–10 7.44E?01 9.06E?02 4.64E–02

f13 1.36E102 5.75E?06 9.43E?02 1.17E?04

f14 1.38E–01 4.29E?02 6.09E?02 7.96E–02

f15 0.00E100 2.14E?01 1.75E?00 0.00E100

f16 7.46E–09 1.60E?02 1.92E?03 5.40E–01

f17 3.70E101 1.75E?05 3.36E?03 2.08E?04

f18 4.73E–04 2.12E?02 6.89E?02 1.50E–01

f19 0.00E100 2.06E?03 7.52E?02 0.00E100

Table 11 Mean errors obtained by DE, CHC, G-CMA-ES, and

RPSO-vm for dimension 500

f/Alg. DE CHC G-CMA-ES RPSO-vm

f1 0.00E100 2.84E–12 0.00E?00 2.65E–14

f2 5.35E?01 1.29E?02 3.48E–04 1.67E?01

f3 4.76E?02 1.14E?06 3.58E102 1.13E?03

f4 3.20E–01 1.91E?03 2.10E?03 2.44E–14

f5 0.00E100 6.98E–03 2.96E–04 2.54E–01

f6 1.65E–12 5.16E?00 2.15E?01 3.14E–12

f7 0.00E100 1.27E–01 7.21E?153 0.00E100

f8 6.09E?04 7.22E?04 2.36E–06 3.00E?05

f9 2.52E?03 3.00E?03 1.74E?03 4.85E100

f10 0.00E?00 1.86E?02 1.27E?02 0.00E100

f11 6.76E–04 1.81E?03 4.16E?03 4.88E?00

f12 7.07E–09 4.48E?02 2.58E?03 1.32E–08

f13 3.59E102 3.22E?07 2.87E?03 1.33E?03

f14 1.35E–01 1.46E?03 1.95E?03 1.29E?00

f15 0.00E100 6.01E?01 2.82E?262 0.00E100

f16 2.04E–08 9.55E?02 5.45E?03 2.12E?00

f17 1.11E102 8.40E?05 9.59E?03 5.72E?02

f18 1.22E–03 7.32E?02 2.05E?03 2.47E?00

f19 0.00E100 1.76E?03 2.44E?06 0.00E100

Table 12 Mean errors obtained by DE, CHC, and RPSO-vm for

dimension 1,000

f/Alg. DE CHC RPSO-vm

f1 0.00E100 1.36E–11 2.72E–14

f2 8.46E?01 1.44E?02 4.29E101

f3 9.69E?02 8.75E?03 3.21E102

f4 1.44E?00 4.76E?03 4.81E–14

f5 0.00E100 7.02E–03 2.14E–01

f6 3.29E–12 1.38E?01 4.92E–12

f7 0.00E100 3.52E–01 0.00E100

f8 2.46E105 3.11E?05 9.35E?05

f9 5.13E?03 6.11E?03 1.17E101

f10 0.00E100 3.83E?02 0.00E100

f11 1.35E–03 4.82E?03 1.10E?01

f12 1.68E–08 1.05E?03 1.00E–09

f13 7.30E102 6.66E?07 1.93E?03

f14 6.90E–01 3.62E?03 5.27E–01

f15 0.00E100 8.37E?01 0.00E100

f16 4.18E–08 2.32E?03 9.50E–01

f17 2.36E102 2.04E?07 2.82E?03

f18 2.37E–03 1.72E?03 1.80E?00

f19 0.00E100 4.20E?03 0.00E100
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vm obtained the second best mean fitness for the remaining

of hybrid functions (dimension 500). Statistically, Holm’s

test confirms our initial hypothesis since it showed

(Table 7) that the results of RPSO-vm are not significantly

different to the ones of DE (p value = 0.05), and they are

statistically better than the results of the rest of algorithms.

5.2.5 Dimension 1000

For the largest scale, Table 12 shows the mean errors where

RPSO-vm obtained the best results in 10 out of 19 functions.

As aforementioned, G-CMA-ES did not obtained any value

for dimension 1,000. Regarding dimension 500, the set of

functions for which RPSO-vm obtained the best mean fitness

has been increased with f2, f3, f12, and f14, having these

functions different properties of modality and separability.

As happened in all dimensions, in spite of having DE the best

average ranking, the Holm’s test (Table 7) showed RPSO-

vm is statistically similar to DE. In comparison with CHC,

our proposal is statistically the best algorithm.

From a graphical point of view, Fig. 1 illustrates the

tendency of results of the compared algorithms and

RPSO-vm for functions f2, f9, f14, and f19 through the

different dimensions. We have chosen these functions

since they showed a representative behavior in terms of

scalability.

Thus, we can observe in Fig. 1 that the performance of

all algorithms deteriorates with the increment of the

dimension. Nevertheless, this degradation is slight in

almost all cases, and even nonexistent in others, as hap-

pened in functions f2 and f19 for algorithms RPSO-vm and

DE. A different and anomalous behavior is observed in G-

CMA-ES for functions f2 and f19, where it diminishes

quickly. We suspect that the use of covariance matrix

mechanism of G-CMA-ES is unsuitable for large dimen-

sions due to the great amount of resources it requires

(Hansen et al. 2003; Knight and Lunacek 2007).

5.3 Computational effort

Finally, we present in this section some remarks about the

computational effort. To execute these experiments, we

have used the computers of the laboratories of the Depar-

tament of Computer Science of the University of Málaga

(Spain). Most of them are equipped with modern dual-core

processors, 1GB RAM, and Linux so, having into account

that there are more than 180 computers, that means that up

to 360 cores have been available. To run all the programs,

we have used the Condor (Thain et al. 2005) middleware

that acts as a distributed task scheduler (each task dealing

with one independent run of RPSO-vm).

In Table 13, we present the average running time (sec-

onds) in which RPSO-vm has found the best mean error for

all functions and for all dimensions. As expected, the

running time increases with the number of variables, spe-

cially in non-separable functions. Specifically, f1 (Shifted

Sphere) required the lowest time to be optimized for all

dimensions, and f17 (Hybrid NS f9�f3) toke the longest

time. In general, hybrid composition functions required

more time to reach their best value than simple functions.
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Fig. 1 Scalable results of DE, CHC, G-CMA-ES, and RPSO-vm for

functions f2, f9, f14, and f19. Y axis shows the results in logarithmic

scale. X axis shows the problem dimensions
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In this sense, an interesting observation consists in

comparing the increment of both, the processing time and

the optimum mean error found, through the different scales

of the search space. This way, we can obtain insights about

the computational effort required with regards to the quality

of solutions obtained. Figure 2 shows a representative case

observed in function f2, where the increment of the pro-

cessing time as well as the mean error is practically linear. If

we take into account that the search space grows expo-

nentially with the dimension ½xlow; xupp�DIM
in all functions,

we can claim that our proposal scales successfully. Con-

cerning the quality of solutions, the deterioration that the

mean error suffers is higher in comparison with the

processing time. Specifically, from dimension 200–500, the

mean error increases in two orders of magnitude while the

time required takes less than one order of magnitude.

Curiously, the difference in the mean error between 500 and

1,000 dimensions is not bigger than one order of magnitude

which leads us to suspect that our proposal performs rela-

tively better in larger dimensions than in smaller ones.

6 Conclusions

In this work, we have incorporated both velocity modulation

and restarting mechanisms to the PSO with the aim of

enhancing its scalability. Our hypothesis is that these two

new mechanisms can help the PSO to avoid the early con-

vergence and redirects the particles to promising areas in the

search space. The experimentation phase has been carried

out in the scope of this special issue to test the ability of

being scalable. The results obtained show that our proposal

is scalable in all functions of the benchmark used, as well as

highly competitive with regard to other compared optimiz-

ers. In concrete, we can remark the following:

the new proposal, called Restarting PSO with Velocity

Modulation (RPSO-vm), outperforms the basic PSO, as

well as PSO with each new mechanism separately, for all

dimensions. Additionally, the RPSO-vm algorithm with

global best neighborhood topology outperforms (lb)RPSO-

vm: they two are the same algorithm but one has a global

best (gbest) topology while the other has a variable

neighborhood (lbest) topology.

RPSO-vm shows a competitive performance in terms of

its scalability. In fact, it is the second best algorithm for all

dimensions and statistically similar to the best one in

comparison with provided algorithms in this Special Issue.

These algorithms: DE, CHC, and G-CMA-ES, are well-

known optimizers traditionally used for continuous opti-

mization and showing an excellent performance in other

bechmarks (CEC’05, CEC’08, BBOB’09, etc.).

RPSO-vm obtained the best results in functions f4, f7,

f9, f10, f15, and f19 for all the dimensions. These functions

are all shifted and they have different properties of

modality, separability and composition. For the largest

dimension (1,000), the set of functions in which our

algorithm obtained the best results is increased with f2, f3,

f12, and f14.

In terms of computational effort, the running time

increases with the number of variables, specially in non-

separable and hybrid composition functions. Additionally,

we observed that from dimension 200–500 the mean error

increased in two orders of magnitude while the time

required takes less than one order of magnitude. The dif-

ference in the mean error between 500 and 1000 dimen-

sions is not bigger than one order of magnitude. This leads

Table 13 Average running time (ART), in seconds, of the 25 runs of

RPSO-vm for all functions and for all dimensions D

ART/D 50 100 200 500 1,000

f1 7.91E–01 3.33E?00 1.36E?01 8.42E?01 3.60E?02

f2 2.72E?00 9.67E?00 4.10E?01 2.55E?02 9.37E?02

f3 6.30E?00 2.66E?01 9.85E?01 5.71E?02 2.50E?03

f4 2.82E?00 1.26E?01 5.50E?01 3.81E?02 1.52E?03

f5 2.19E?00 8.06E?00 3.82E?01 2.24E?02 8.60E?02

f6 4.82E?00 1.65E?01 7.43E?01 4.14E?02 1.76E?03

f7 2.42E?00 8.62E?00 3.58E?01 2.11E?02 8.72E?02

f8 2.27E?00 9.49E?00 3.41E?01 2.24E?02 8.02E?02

f9 9.05E?00 3.28E?01 1.32E?02 1.11E?03 3.19E?03

f10 4.14E?00 1.79E?01 6.40E?01 4.12E?02 1.74E?03

f11 9.23E?00 3.61E?01 1.43E?02 9.64E?02 3.92E?03

f12 4.17E?00 1.59E?01 6.63E?01 4.04E?02 1.33E?03

f13 7.44E?00 2.76E?01 9.97E?01 7.62E?02 3.03E?03

f14 5.91E?00 2.50E?01 9.30E?01 5.34E?02 2.20E?03

f15 2.78E?00 1.16E?01 4.43E?01 2.67E?02 8.90E?02

f16* 5.49E?00 2.20E?01 9.45E?01 6.09E?02 2.25E?03

f17* 8.48E?00 3.13E?01 1.41E?02 7.00E?02 3.24E?03

f18* 7.18E?00 3.05E?01 1.23E?02 7.47E?02 2.93E?03

f19* 4.01E?00 1.38E?01 6.15E?01 3.61E?02 1.43E?03

1,00E-04

1,00E-03

1,00E-02

1,00E-01

1,00E+00
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1,00E+02

50 100 500 1000
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Fig. 2 Differences in times versus mean error magnitudes of f2 for

each dimension. Y axis contains values in logarithmic scale and X axis

contains dimensions
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us to suspect that our proposal performs relatively better in

larger dimensions than in smaller ones.

In general, we can conclude that modifying PSO, a

simple well-known algorithm, we have reached a highly

accurate performance even in large scale environments. In

the light of these results, we are encouraged to follow

betting on PSO based algorithms in future works.
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