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Abstract Large scale continuous optimization problems
are more relevant in current benchmarks since they are
more representative of real-world problems (bioinformat-
ics, data mining, etc.). Unfortunately, the performance of
most of the available optimization algorithms deteriorates
rapidly as the dimensionality of the search space increa-
ses. In particular, particle swarm optimization is a very
simple and effective method for continuous optimization.
Nevertheless, this algorithm usually suffers from unsuc-
cessful performance on large dimension problems. In this
work, we incorporate two new mechanisms into the par-
ticle swarm optimization with the aim of enhancing its
scalability. First, a velocity modulation method is applied
in the movement of particles in order to guide them
within the region of interest. Second, a restarting mech-
anism avoids the early convergence and redirects the
particles to promising areas in the search space. Experi-
ments are carried out within the scope of this Special
Issue to test scalability. The results obtained show that
our proposal is scalable in all functions of the benchmark
used, as well as numerically very competitive with
regards to other compared optimizers.
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1 Introduction

In the evaluation of the search capabilities of a given
optimization algorithm the usual approach is to choose a
benchmark of known problems, to perform a fixed number
of function evaluations, and to compare the results against
the ones of other algorithms in the state of art. However,
while some real industry problems can have hundreds and
thousands of variables, current benchmarks are normally
adopted with less than a hundred decision variables (see
CEC’05, Suganthan et al. 2005; BBOB’09, Hansen et al.
2009; BBOB’10, Hansen et al. 2010 test beds). Large scale
continuous optimization problems have attracted more and
more interest (CEC’08, Tang et al. 2007; ISDA’09, Herrera
and Lozano 2009; CEC’10, Tang et al. 2010) since they
introduce a high complexity to the optimization process.
Issues like the exponential increment of the solution space,
as well as the change that some problems suffer from their
own characteristics with the scale, can deteriorate quickly
the performance of our optimization algorithms (Shang and
Qiu 2006). This way, we can study certain mechanisms that
show the best performance in short scale optimization
problems, which is the case of the covariance matrix in
G-CMA-ES (Auger and Hansen 2005), but with an
unsuitable behavior for high dimensional functions (more
than 100 variables). A different performance can be
observed in simple algorithms like MTS (Tseng and Chen
2008), which combines several local search strategies using
a small population. MTS was the best in the special session
of large scale optimization of CEC’08 (Tang et al. 2007),
where functions with thousands of variables were tackled.
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All this motivates us to deeply analyze the scalable
capacities of optimization algorithms. In particular, particle
swarm optimization (PSO) (Kennedy and Eberhart 2001) is
a very simple and effective method for continuous opti-
mization. Nevertheless, this algorithm is characterized by
an early convergence behavior, mainly produced by the
overinfluenced best solution and its relative facility to fall
in local optima (Liang et al. 2006; van den Bergh and
Engelbrecht 2004). For this reason, PSO usually suffers
from an unsuccessful performance on large dimension
problems.

In this work, we have incorporated two mechanisms to
the PSO with the aim of enhancing its scalability. First, a
velocity modulation method is applied in the movement of
particles in order to guide them within the feasible region.
Second, a restarting mechanism avoids the early conver-
gence and redirects the particles to promising areas in the
search space. To evaluate the scalability of the resulting
approach, we have followed the experimental framework
proposed in this Special Issue on Scalability of Evolu-
tionary Algorithms and other Metaheuristics for Large
Scale Continuous Optimization Problems (in URL
http://www.sci2s.ugr.es/eamhco/CFP.php). We also stud-
ied the influence of both velocity modulation and restarting
mechanisms to show real insights of the improvement of
our proposal, called Restart PSO with Velocity Modulation
(RPSO-vm), regarding the basic PSO. The results obtained
confirm us that RPSO-vm is scalable in all functions of the
benchmark used, as well as highly competitive in com-
parison with PSO and other well-known efficient
optimizers.

The remaining of this paper is organized as follows. The
next section presents basic preliminary concepts. In
Sect. 3, the RPSO-vm algorithm is introduced. Section 4
describes the experimentation procedure with the bench-
mark of functions and the parameter settings. In Sect. 5,
experimental results are reported with comparisons, anal-
yses, and discussions. Finally, concluding remarks are
given in Sect. 6.

2 Preliminaries

Particle swarm optimization (Montes de Oca et al. 2009;
Kennedy and Eberhart 2001) has been successfully used
in many problems of real parameter optimization (Das
et al. 2008; Garcia-Nieto et al. 2009; Hsieh et al. 2008;
Liang et al. 2006; Liang and Suganthan 2005) since it is
a well adapted algorithm for continuous solution
encoding. Basically, a continuous optimization problem
consists of:

@ Springer

find x* such that ¥V xf(x") <f(x) (minimization).

Here, f(.) is a function in a real space domain that models
an optimization problem, x = {x{,x,,...,xp;u} is a solu-
tion for such problem, and DIM is the number of variables
with x; € [Xiow, Xupp] (1 <i < DIM). Finally, Xiow, Xupp € R
correspond to lower (low) and upper (upp) limits of the
variable domain, respectively.

In PSO, each potential solution to the problem is given
by a particle position and the population of particles is
called swarm. In this algorithm, each particle position x; is
updated each generation ¢ by means of Eq. 1.

Xi(t+1) —x; +vi(t+1) (1)

where factor v;(¢ 4 1) is the velocity of the particle and is
given by

Vit +1) = vi(t) + ¢ - UN(0, 1) - (p; (1) — xi(1))

+ @3- UN(0,1) - (bi(r) = xi(1)) @)

In this formula, p;(¢) is the personal best solution that
the particle i has stored so far, b;(z) is the global best
particle (leader) that the entire swarm has ever generated.
Finally, ¢, and ¢, are specific parameters which control
the relative effect of the personal and global best
particles, and UN(0,1) is a uniform random value in
[0,1] which is sampled anew for each component of the
velocity vector.

Velocity constriction is one of the main mechanisms
used for controlling the movement of particles through the
search space and for balancing the exploration-exploitation
trade-off of the algorithm. Therefore, an efficient move-
ment strategy of particles could help the PSO to find an
optimum even in large scale problems. We can find several
velocity constriction mechanisms in the literature. Three of
the most popular are the following ones:

e Vmax factor. The simplest method for regulating the
velocity lies in the maximum (and minimum) veloc-
ity delimitation. This mechanism uses a given value
Vmax for adjusting the maximum velocity each
particle undergoes each generation step. According
to this method, if the new velocity exceeds V,,.x then
this value is aggregated to the new position calcu-
lation (Eq. 1) instead of the corresponding new
velocity.

o [nertia weight () (Shi and Eberhart 1998; Suresh et al.
2008) is one of the most used methods in PSO for
controlling the velocity of particles in their movement.
This parameter controls the trade-off between global
and local search. Then, a high inertia value provides the
algorithm with exploration capability and a low inertia
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promotes the exploitation. The inertia weight linearly
changes during the optimization process (of the algo-
rithm) by using the following equation:

(wmax - U)min) . #gcurrenl (3)
#g total

@ — Wmax —

This way, at the beginning of the process a high inertia
(0Wmax) value is introduced (for exploration) which
decreases until reaching the lowest value (wp;,). The
inertia value is incorporated in the velocity calculation
as follows:

Vi(t+1) <o -vi(t) + ¢, - UN(0,1) - (p;(t) — xi(2))
+ @, - UN(0,1) - (b;(t) — x(1)) (4)

e A third velocity constriction method was introduced in
(Clerc and Kennedy 2003). In that work, the author
indicates that the use of a constriction factor (y) may be
necessary to ensure convergence of the particle swarm
algorithm. A detailed discussion of the constriction
factor is beyond the scope of this work in (Clerc and
Kennedy 2003), but a simplified method of
incorporating it appears in Eq. 5, where y is a
function of ¢ and ¢, as reflected in Eq. 6.

vi(t+ 1) — z[vi(t) + @, - UN(0,1) - (p;(#) — xi(?))
+ @y - UN(0,1) - (bi(1) — x;(2))] (5)

0= +0y,0>4  (6)

2
X:
‘2—90—\/902—4@

3 The algorithm

Our proposal, RPSO-vm, consists in running a PSO algo-
rithm in which we have incorporated two main ideas:
velocity modulation and restarting mechanisms.

Using the velocity modulation, the algorithm controls
that the overall movement calculated in each evolution step
and for each particle position does not exceed the limits
(X1ow» Xupp) Of the problem domain. First, after calculating
the new velocity value (v/,,) RPSO-vm performs a mod-
ulation procedure as shown in Algorithm 1. The velocity
vector magnitude (V;(¢)) is then bounded, which limits the
given particle to move far from the interest area. These
steps are calculated in Algorithm 2 in lines 7 and 8. Sec-

ond, once obtained the new velocity v/(r + 1), the overall
movement is calculated, also controlling that the new
particle position (x/,,) does not exceed the problem limits.
If this happens, the new position is recalculated by sub-
tracting the new velocity to the old particle position (lines
10-14 in Algorithm 2).

Algorithm 1 Pseudocode of velmod procedure

if x{(}_w > v, then
vi(t + 1) —
else if v/, > xi,,, then
/(14 1) — Xipp
end if )
: Output: v/ (1 +1) /*constricted velocity*/

“low

A

A second phase of RPSO-vm concerns the restarting
strategy. Similar to other known algorithms like CHC
(Eshelman 1991) and G-CMA-ES (Auger and Hansen
2005), our proposal is stopped whenever one stopping
criterion described below is met, and a restart is launched.
The decision on when to restart the algorithm is made
according to two independent criteria:

1. Stop if the standard deviation of the fitness values of
particles in the entire swarm is smaller than le — 3. In
this case, the particles are restarted by randomly
initializing their positions with a probability of 1/DIM
(lines 18-26 in Algorithm 2).

2. Stop if the overall change in the objective function
value is below le — 8 for 10 - DIM/size(S) gener-
ations. In this case, the particles are restarted by
calculating their derivatives to the global best
position b and dividing them into two (lines
27-33 in Algorithm 2). This way, we force the
particles to go to the best but avoiding the global
convergence.

Applying the first restarting criteria, our algorithm tries
to mitigate the early stagnation that basic PSO usually
suffers from, especially in multimodal functions. In spite
of working with high inertia and/or high social influences
(¢, and ¢,), which moves the particles to distant posi-
tions, the PSO tends to be easily trapped in unproductive
regions. This drawback is specially sensitive in functions
with multiple local optima such as Rastriging and its
hybrids.

The second restarting criterion is based on the existence
of plateaus and quite regular regions in functions like
Rosenbrock, Schwefel, and their hybrids that make the
PSO to spend a number of function evaluations (with time
and computing resources) without an effective improve-
ment. In this case, particles tend to spread them in the
search space avoiding the influence of the best particle.
Therefore, after a certain number of function evaluations
without improvement, the particles are moved to their
derivatives with regard to the best position.

@ Springer
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Algorithm 2 Pseudocode of RPSO-vm
I: t+0
2: initialize(S(¢)) /* Swarm S(0)*/
3: while not stop condition is met (MAXIMUM(t)) do

4 [k kR ok Rlok Particle Swarm sk skkoksokoksdokokskok /

5 for each particle position x;(#) of the swarm S(7) do
6: for each variable j of the particle position x;(7) do
7 Ve — @ v (1) + @1 -UN(0,1) - (p! (t) — x (1))

| +92-UN(0,1)- (b (1) — 2/ (1))
Vi] (, + 1) — velmod(vl;wc)

9: X — x] (1) +vI(t+1)
10: if x), < Xhux < xipp then
11: x](t41) — Xhux
12: else ) )
13: x/(t4+1) —x/ () —vi(t+1)
14: end if
15: end for
16:  end for
18:  if std(S) < le—3 then
19: for each particle position x;(¢) of S(z) (with x;(r) # b(t)) do
20: for each variable j of the particle position x;(7) do
21: if /(1) < 1/DIM (with r/(¢) € [0,1]) then
22: x(t+1) —x], +UNO,1) (pp —x7,.,)
23: end if
24: end for
25: end for
26:  endif
27:  if change(fit(b)) < le —8 for (10- DIM)/size(S) steps then
28: for each particle position x;(¢) of S(z) (with x;(r) # b(t)) do
29: for each variable j of the particle position x;(7) do
30: x(t+1) — (bI(t) —x/(1))/2
31: end for
32: end for
33:  endif
34:  tet+1

35: end while
36: Output: b /*The best solution found*/

Algorithm 2 shows the complete pseudo-code of the
RPSO-vm algorithm developed for this work. First, an
initialization process of all particles in the swarm § is
carried out. After this, each evolution step the particle’s
positions are updated following the velocity variation
model of the equations previously explained (lines 5-16).
If stopping criteria are reached, the algorithm restarts
modifying the particles, excepting for the best one (lines
18-33). Finally, the algorithm returns the best solution
found during the whole process.

4 Experimental setup

In this section, we present the experimental methodology
and statistical procedure followed to evaluate and to
compare our proposal. This experimentation has been
defined in the scope of the Special Issue on Scalability of
Evolutionary Algorithms and other Metaheuristics for
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Large  Scale Continuous  Optimization  Problems
(SOCO’10), available in URL http://www.sci2s.ugr.es/
eamhco/CFP.php.

We have implemented our RPSO-vm in C++ using the
MALLBA library (Alba et al. 2007), a framework of
metaheuristics. The benchmark of functions was tackled
including the C-code provided in this special issue to our
implementation of RPSO-vm. A complete package of this
software is available in the new version release of MAL-
LBA' Following the specifications of the SOCO’10
experimental procedure, we have performed 25 indepen-
dent runs of RPSO-vm for each test function and dimen-
sion. The study has been made with dimension D = 50,
100, 200, 500, and 1,000 continuous variables. The mea-
sures provided are the Average, the Maximum, the Mini-
mum, and the Median of error of the best individuals found
in the 25 runs. For a solution x, the error measure is defined
as: f(x) —f*, where f* is the optimum fitness of the
function. The maximum number of fitness evaluations has
been stated to 5,000 - D, which constitutes the stop con-
dition of each run.

To analyze the results we have used non-parametric
(Sheskin 2003) tests. These tests use the mean ranking of
each algorithm. We have applied them since several times
the functions might not follow the conditions of normality
and homoscedasticity to apply parametric tests with secu-
rity (Garcia et al. 2009). In particular, we have considered
the application of the Iman and Davenport test, and Holm’s
test as post-hoc procedure. The former is used to know
beforehand if there are statistically relevant differences in
compared algorithms. In that case, a post-hoc procedure,
the Holm’s test, is then employed to know which algo-
rithms are statistically worse than the reference algorithm
with the best ranking.

4.1 Benchmark functions

The test suite elaborated for this Special Issue is composed
by 19 functions with different properties (Herrera et al.
2010): unimodal, multimodal, separable, non-separable,
shifted, and hybrid composed. Functions fl to f6 were
defined for CEC’08 (Tang et al. 2007) and functions
f7—£11 were defined for ISDA’09 (Herrera and Lozano
2009) (and shifted for SOCO’10), where the previous ones
were also used. Finally, functions f12—f19 have been cre-
ated specifically for this Special Issue. Table 1 shows their
names, bounds, and optimum values. We can describe
several properties of the functions that we consider
interesting.

! MALLBA Library http:/www.neo.lcc.uma.es/mallba/easy-mallba/
html/mallba.html. Directory Mallba/rep/PSO/soc02010.
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e Functions fl and f2 are shifted unimodal, functions f3—  Table 2 Parameter setting used in RPSO-vm
f6 are shifted multimodal and functions f7-fl11 are Description Parameter Value
shifted unimodal.
e Functions f2, f3, f5, 9, and f10 are non-separable. That ~ Swarm size size () 10
is specially interesting to analyze if our proposal  Inertia weight ® 0.0 —0.1
obtains good results in non-separable functions since  Individual coefficient ? L5
we can observe its capacity of managing correlated  Social coefficient P2 L5

variables, a typical property in real world problems.

e Functions f12-f19 are hybrid composition functions.
They have been generated by composing (H) two
functions, one or both of them non-separable. For these
compositions, functions f7-f11 have been used in their
non-shifted versions (NS). A composition uses a
splitting mechanism to graduate the proportion (in
parentheses in Table 1) of non-separable variables in
the complete search space.

4.2 Parameter settings

Table 2 shows the parameter settings used to configure our
proposal, RPSO-vm. These parameters were tuned in the
context of the ISDA’09 special session of real parameter
optimization (Herrera and Lozano 2009) reaching results
statistically similar to the best participant algorithm in that
special session. These values of parameters were kept the
same for all the experiments. The inertia weight changes
linearly by following Eq. 3.

Table 1 SOCO’10 test suite of functions

Number Name Intervals Va

fl Shifted Sphere [—100, 100] —450
2 Shifted Schwefel 2.21 [—100, 100] —450
3 Shifted Rosenbrock [—100, 100] 390
f4 Shifted Rastrigin [-5, 5] —-330
5 Shifted Griewank [—600, 600] —180
f6 Shifted Ackley [—32, 32] —140
7 Shifted Schwefel 2.22 [—10, 10] 0
8 Shifted Schwefel 1.2 [—65.536, 65.536] 0
9 Shifted Extended {10 [—100, 100] 0
f10 Shifted Bohachevsky [—15, 15] 0
f11 Shifted Schaffer [—100, 100] 0
f12 Hybrid NS f9®f1 (0.25) [—100, 100] 0
f13 Hybrid NS f9¢£3 (0.25) [—100, 100] 0
f14 Hybrid NS f9&£4 (0.25) [-5, 5] 0
f15 Hybrid NS f10&NS {7 (0.25) [—10, 10] 0
f16 Hybrid NS f9@f1 (0.50) [—100, 100] 0
f17 Hybrid NS f9®f3 (0.75) [—100, 100] 0
f18 Hybrid NS f9¢£4 (0.75) [-5, 5] 0
f19 Hybrid NS f10¢NS {7 (0.75) [—10, 10] 0

5 Analysis of results

In this section, the results are presented and several anal-
yses are made as follows: first, we carry out a brief analysis
of the performance of our proposal in terms of the
improvement obtained by both, velocity modulation and
restarting mechanisms. In this sense, an additional com-
parison is made concerning the neighborhood topology of
RPSO-vm in terms of global best versus local best guid-
ance of particles. Second, the scalability analysis is tacked
in comparison with provided results of other algorithms
(DE, CHC, and G-CMA-ES) for all dimensions.

Finally, we present the computational effort required in
terms of average running time.

5.1 RPSO-vm performance results

As specified in benchmarking requirements of this Special
Issue, we show in Table 3 the average, the maximum, the
minimum, and the median of the best error values found in
25 independent runs of our RPSO-vm, for each function
and for each dimension. In this table, we have marked in
bold face the average error values since they will be used in
advance for comparisons (as recommended in this test
bed). Nevertheless, we can notice that median values are
frequently better than average values, especially in shifted
Extended_f10 (f9) and several hybrid functions (f14, f16
and f17) where the distribution of results are scattered.

A first analysis consists of studying the improvement
obtained by RPSO-vm with regards to basic PSO algo-
rithm. Table 4 shows the mean errors (in 25 runs) obtained
by RPSO-vm in comparison with the ones of PSO only
with restarting (RPSO), PSO only with velocity modulation
(PSO-vm), and the basic PSO. Additionally, we have
included to this comparison the standard version of PSO
(SPSO 2007) consisting of the best PSO. This version uses
a variable random topology for selecting the best neighbor
(b) for each particle (Ghosh et al. 2009). The resulting
algorithm (/6)RPSO-vm incorporates both, modulation
velocity and restart mechanisms in order to obtain an as fair
as possible comparison. For this specific analysis, we have
only focused on 1,000 variables dimension since it allows
the most interesting analysis.
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Table 3 Maximum, minimum, median, and mean errors obtained by RePSOVM for all dimensions

Dimension Value

f1

2 3

f4

5

f6 f7

8

9

f10

50 Maximum
Median
Minimum
Mean

100 Maximum
Median
Minimum
Mean

200 Maximum
Median
Minimum
Mean

500 Maximum
Median
Minimum
Mean

1,000 Maximum
Median
Minimum
Mean

2.84E-14
2.68E-14
1.87E-14
2.62E-14
2.84E-14
2.80E-14
1.57E-14
2.66E-14
2.84E-14
2.75E-14
0.00E+00
2.53E-14
2.84E-14
2.82E-14
1.73E-14
2.65E-14
2.84E-14
2.82E-14
2.07E-14
2.72E-14

1.58E-02 1.86E+04 2.84E-14
6.60E-03 1.90E+01 2.66E-14
4.36E-03 5.21E-02 0.00E+400
7.54E-03 1.75E+03 2.30E-14
2.92E-01 9.65E+03 2.84E-14
2.01E-01 1.19E+02 2.77E-14
1.17E-01 3.57E-01 1.17E-14
1.98E-01 1.42E+03 2.61E-14
2.49E+00 6.60E+03 2.84E-14
2.01E+00 6.80E+01 2.74E-14
1.65E4-00 8.75E-02 0.00E4-00
2.00E+00 1.03E+03 2.43E-14
1.81E+01 1.47E+04 2.84E-14
1.71E4+01 1.38E+02 2.77E-14
1.49E+01 2.70E-02 0.00E4-00
1.67E+01 1.13E+03 2.44E-14
4.69E+01 2.07E4-03 3.03E-13
4.29E+01 1.37E4+02 2.78E-14
3.99E+01 1.85E+01 2.27E-14
429E+01 3.21E+02 4.81E-14

3.20E-01
7.36E-02
0.00E+00
9.53E-02
3.18E-01
8.80E-02
1.31E-14
1.07E-01
7.74E-01
1.18E-01
1.35E-14
1.73E-01
6.01E-01
2.52E-01
1.42E-14
2.54E-01
8.68E-01
1.12E-01
1.22E-14
2.14E-01

1.78E-11 1.78E-14 2.13E+03 6.77E+00

2.66E-13 0.00E+00
1.24E-13 0.00E+00
1.49E-12 1.14E-15
9.52E-11 0.00E+-00
6.32E-13 0.00E4-00
2.42E-13 0.00E4-00
4.76E-12 0.00E+00
8.20E-12 0.00E+4-00
1.89E-12 0.00E+4-00
6.96E-13 0.00E+-00
2.95E-12 0.00E+00
7.01E-12 1.13E-14
2.59E-12 0.00E+400
1.21E-12 0.00E+4-00
3.14E-12 0.00E+00
2.41E-11 1.55E-14
3.75E-12 0.00E+4-00
2.60E-12 0.00E+-00
4.92E-12 0.00E+00

1.04E+03 3.12E-06
4.37E+02 0.00E+4-00
1.06E+03 2.94E-01
1.89E+04 2.80E+00
1.05SE+04 2.58E-05
6.82E+03 5.93E-07
1.09E+04 1.85E-01
7.06E4+04 2.51E401
5.05E+04 1.48E-03
3.81E+04 1.35E-06
5.23E+04 1.67E+00
3.62E+05 2.28E+01
3.00E+05 1.81E+00
2.47E+05 1.90E-03
3.00E+05 4.85E+00
1.14E406 3.17E+01
9.21E+05 9.84E+00
7.39E+05 6.45E-02
9.35E+05 1.17E+01

0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00

Dimension Value

f11

f12

f13 f14

f15

f16

f17

f18 f19

50 Maximum
Median
Minimum
Mean

100 Maximum
Median
Minimum
Mean

200 Maximum
Median
Minimum
Mean

500 Maximum
Median
Minimum
Mean

1,000 Maximum
Median
Minimum

Mean

3.07E-01
3.84E-06
0.00E+00
1.68E-02
3.83E4+00
1.84E-05
2.58E-08
4.61E-01
3.73E4-00
5.47E-02
4.37E-05
5.66E-01
1.56E4-01
3.95E4-00
1.70E-03
4.88E+00
3.67E401
9.61E+00
7.67TE-02
1.10E+01

2.14E+00
0.00E+00
0.00E+00
8.58E-02
2.30E-13
0.00E+00
0.00E+00
1.60E-14
1.16E+00
2.79E-14
0.00E+00
4.64E-02
2.98E-07
2.75E-13
0.00E+00
1.32E-08
1.16E-08
2.02E-12
2.98E-14
1.00E-09

1.49E+04 1.04E4-00
1.43E+01 1.72E-14
2.67E-02  0.00E4-00
6.57E+02 6.81E-02
2.56E+04 1.20E4-00
1.06E+02 4.38E-14
5.36E-02  0.00E4-00
2.25E+03 1.27E-01
1.23E4+05 9.95E-01
1.48E+02 3.23E-12
7.56E-01  1.50E-14
1.17E+04 7.96E-02
1.79E+04  1.36E+01
7.20E+01 2.50E-11
2.74E-01  2.05E-13
1.33E+03 1.29E+00
2.78E+04 2.60E4-00
2.27E+02 4.07E-08
4.16E4-01 5.39E-13
1.93E+03 5.27E-01

0.00E4+00 1.05E-09
0.00E4+00 1.68E-11
0.00E4-00 2.20E-12
0.00E+00 7.88E-11
0.00E4+00 1.11E-06
0.00E4+00 4.64E-10
0.00E4+00 5.17E-12
0.00E+00 4.87E-08
0.00E400 1.29E4-01
0.00E4-00 1.02E-09
0.00E4+00 5.35E-11
0.00E+00 5.40E-01
0.00E4-00 3.04E4-01
0.00E4-00 3.46E-08
0.00E400 6.84E-10
0.00E+00 2.12E+00
0.00E4-00 7.53E4-00
0.00E4-00 2.19E-06
0.00E4-00 6.27E-09
0.00E+00 9.50E-01

9.08E+03
5.06E+01
9.41E-01

8.73E+02
3.56E+404
1.51E+02
1.71E-01

1.76E+03
2.40E+05
2.77E402
1.31E-01

2.08E+04
8.31E+03
2.16E+01
7.85E-01

5.72E+02
3.28E+4-04
4.02E+01
1.79E+4-00
2.82E+03

1.26E+00  0.00E+4-00
3.18E-09  0.00E+400
4.60E-10  0.00E4-00
5.05E-02  0.00E+00
1.61E4+00 0.00E+400
5.04E-08  0.00E+4-00
1.46E-09  0.00E+400
1.36E-01  0.00E+00
3.73E4+00 0.00E+400
2.60E-08  0.00E4-00
3.33E-09  0.00E+00
1.50E-01 0.00E+00
1.41E+01  0.00E+00
7.80E-01  0.00E4-00
1.44E-08  0.00E4-00
247E+00 0.00E+00
6.52E+00 0.00E4-00
1.33E4+00 0.00E+4-00
2.93E-07  0.00E+00
1.80E+00 0.00E+00

As we can see in Table 4, RPSO-vm obtains the higher
number of best error values (15 out of 19 in bold), and
followed by RPSO. The other versions are clearly worse
than the formers. In addition, after applying the Iman-
Davenport test to see whether there are significant
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differences between them we obtained a test value of 166.07
with a critical value of 3.77 (with o = 0.05), which proves
that there is an evident improvement of RPSO-vm over PSO.

More precisely, Table 5 contains the results of a mul-
ticomparison Holm test where we can see that RPSO-vm is
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Table 4 Mean errors obtained by RPSO-vm, RPSO, PSO-vm, and
PSO for dimension 1,000

F/D RPSO-vm RPSO PSO-vm  PSO (Ib)RPSO-vm

fl  2.72E-14 2.69E-14 5.61E4+06 5.55E406 6.31E406
2  429E+01 4.38E+01 1.72E402 1.72E402 1.89E+02
f3  3.21E+02 1.26E+04 543E+12 5.54E+12 7.65E+12
f4  4.81E-14 3.98E-02 232E+04 2.32E+404 2.56E+04
f5 2.14E-01 1.77E-01 4.98E+04 5.05E4+04 5.65E+04
f6  4.92E-12 5.13E-12 2.14E+01 2.14E401 2.15E401

7 0.00E+00 2.00E-14 4.93E+03 4.98E403 3.34E+27
f8  9.35E+05 9.38E405 2.03E+07 2.53E407 8.33E+07
f9 1.17E+01 1.34E+01 1.20E4+04 1.20E404 1.28E404
f10  0.00E+00 0.00E+00 2.16E+05 2.16E405 2.57E+405
fl11 1.10E+01 1.33E+01 1.20E+04 1.20E4+04 1.28E+04
f12 1.00E-09 1.15E-01 4.20E+06 4.18E4+06 4.73E+06
f13 1.93E403 7.38E+02 4.13E+12 4.01E+12 5.86E+12
f14 5.27E-01 6.28E-01 1.76E+04 1.78E4+04 1.96E+04
f15 0.00E+00 0.00E+00 3.81E+04 3.67E4+04 5.37E+18
f16 9.50E-01 7.39E-01 2.67E4+06 2.70E406 3.14E406
f17 2.82E+03 1.42E+04 9.53E+11 9.33E+11 1.64E+12
f18 1.80E+00 3.35E4+00 7.20E+03 7.20E4+03 8.29E+03
f19 0.00E+00 0.00E+00 1.14E+05 1.11E405 6.59E+12

Table 5 Comparison of RPSO-vm versus (/b))RPSO-vm, RPSO,
PSO-vm, and PSO according to Holm’s multicompare test (« = 0.05)

i Algorithm z p value oli Sig.
dif?
4 (Ib)RPSO-vm 7.02 2.09E-12 0.012 Yes
3 PSO 4.10 4.06E-05 0.016 Yes
2 PSO-vm 4.10 4.06E-05 0.025 Yes
1 RPSO 0.41 6.81E-01 0.050 No

statistically better than all PSO versions, excepting RPSO.
In this case, RPSO-vm obtained a better ranking than
RPSO but without significant differences. Therefore, the
main consequence is that velocity modulation (PSO-vm)
can improve the performance of basic PSO, although it is
in the case of PSO with restarting method (RPSO) where a
significant improvement is obtained. In the case of
(Ib)RPSO-vm, we suspect that the fact of using the same
parameter setting specifically fine-tuned for RPSO-vm
(global best) could lead this version of PSO to perform
inadequately in our experiments.

These preliminary results lead us to definitively use
both, the velocity modulation and the restarting method to
design our proposed PSO for large scale optimization
(RPSO-vm).

5.2 Scalability analysis

This section is focused on analyzing the capability of our
RPSO-vm to scale with the dimension of the search space
of each function. As proposed in this Special Issue, the
scalability study is made in comparison with other well-
known algorithms in the state of the art. These algorithms
are a version of DE (DE/1/exp) (Price et al. 2005), CHC
(Eshelman 1991), and G-CMA-ES (Auger and Hansen
2005). The descriptions and the parameter settings of these
algorithms can be found in (Herrera et al. 2010). Therefore,
we first analyze the results of RPSO-vm dimension by
dimension, and secondly, we made a brief study from a
general point of view of the scalability behavior of RPSO-
vm regarding several selected functions (f2, 9, f14, and
f19) of the SOCO’10 benchmark.

An initial study with all these results consists of
applying an Iman-Davenport test to see if there exist sig-
nificant differences between them for all considered
dimensions. Table 6 shows the results of this test, where
we can effectively notice that there are statistical differ-
ences in compared results. In fact, for almost all cases the
test values (ID value) increase with the dimension, which
means that there are higher differences between compared
algorithms in large scales (500 and 1,000) than in small
dimensions (50, 100 and 200). Hence, we can known
beforehand that there is an algorithm with poor scalability
behavior, at least.

Following this general point of view, Table 7 shows the
results of applying a multicomparison Holm’s test to all
mean fitness values obtained by each algorithm for each
dimension. We must notice that G-CMA-ES could not
obtained any result for dimension 1,000 (Table 12), hence
it has not been considered for comparisons regarding the
largest scale.

The main observation we can draw from Table 7 is that
there are two algorithms: DE, and RPSO-vm that clearly
show a better average distribution than the remaining ones.
In addition, these ranks are kept for all dimensions. Con-
cretely, DE reached the best rank and for this reason it has
been considered as the reference algorithm for this

Table 6 Results of the Iman-Davenport’s (ID) test of RPSO-vm and
all compared algorithms for each dimension (¢ = 0.05)

Dimension ID value Critical value Sig. dif?
50 13.80 2.53 Yes
100 13.43 2.53 Yes
200 12.76 2.53 Yes
500 14.37 2.53 Yes
1,000 30.04 2.84 Yes

@ Springer



2228

J. Garcia-Nieto, E. Alba

Table 7 Comparison of DE versus RPSO-vm, CHC, and G-CMA-ES
according to Holm’s multicompare test (o = 0.05)

Table 8 Mean errors obtained by DE, CHC, G-CMA-ES, and RPSO-vm
for dimension 50

DIM i Algorithm z p value oli Sig.
dif?
50 3 CHC 477 1.79E-06  0.016  Yes
G-CMA- 2.95 3.14E-03 0.025 Yes
ES
1 RPSO- 1.57 1.16E-01 0.050  No
vm
100 3 CHC 4.71 2.45E-06  0.016 Yes
G-CMA- 2.89 3.85E-03 0.025 Yes
ES
1 RPSO- 1.44 1.48E-01 0.050 No
vm
200 3 CHC 4.649 3.33E-06  0.016 Yes
G-CMA- 2.76 5.70E-03 0.025 Yes
ES
1 RPSO- 1.38 1.66E-01 0.050  No
vm
500 3 CHC 452 6.07E-06  0.016 Yes
G-CMA- 3.70 2.09E-04  0.025 Yes
ES
1 RPSO- 1.57 1.16E-01 0.050  No
vm
1,000 2 CHC 4.62 3.77E-06  0.025 Yes
RPSO- 0.97 3.30E-01 0.050  No
vm

statistical test. Nevertheless, our RPSO-vm is the only
algorithm that does not shown significant statistical dif-
ferences (sig. dif) with regard to DE (the reference), and
resulting the lower difference precisely in the largest
dimension (1,000 variables). This is an important indicator
that confirms us the successful performance of our proposal
in terms of scalability.

The following Tables 8, 9, 10, 11 and 12 contain the
results of all compared algorithms for dimensions, 50, 100,
200, 500, and 1,000, respectively. The last column in these
tables shows the results of RPSO-vm, indicating in bold
face such values for which the mean error is the best found.
A detailed study leads us to analyze the results dimension
by dimension in the following.

5.2.1 Dimension 50

Table 8 shows mean errors (of 25 runs) obtained by DE,
CHC, G-CMA-ES, and RPSO-vm for dimension 50. In this
case, DE obtained the best results in 13 functions, 7 of
them in hybrid composition functions.

RPSO-vm obtained the best results in 7 functions, and
G-CMA-ES obtained the best results in three functions.

@ Springer

f/Alg. DE CHC G-CMA-ES RPSO-vm
f1 0.00E+00 1.67E-11 0.00E+-00 2.62E-14
2 3.60E-01 6.19E+01 2.75E-11 7.54E-03
3 2.89E+01 1.25E+06 7.97E-01 1.75E+03
4 3.98E-02 7.43E+01 1.05SE+02 2.30E-14
f5 0.00E+00 1.67E-03 2.96E-04 9.53E-02
fo 1.43E-13 6.15E-07 2.09E+01 1.49E-12
7 0.00E+00 2.66E-09 1.01E-10 0.00E+00
8 3.44E+00 2.24E+02 0.00E+00 1.06E+-03
9 2.73E+02 3.10E+02 1.66E+01 2.94E-01
f10 0.00E+00 7.30E+400 6.81E+00 0.00E+00
f11 6.23E-05 2.16E+00 3.01E+01 1.68E-02
f12 5.35E-13 9.57E-01 1.88E+02 8.58E-02
f13 2.45E+01 2.08E+06 1.97E+02 6.57E+02
f14 4.16E-08 6.17E+401 1.09E+-02 6.81E-02
f15 0.00E+00 3.98E-01 9.79E-04 0.00E+00
f16 1.56E-09 2.95E-09 4.27E+02 7.88E-11
f17 7.98E-01 2.26E+04 6.89E+02 8.73E+02
f18 1.22E-04 1.58E+01 1.31E4-02 5.05E-02
19 0.00E+00 3.59E+02 4.76E4-00 0.00E+00

Table 9 Mean errors obtained by DE, CHC, G-CMA-ES, and RPSO-vm
for dimension 100

f/Alg. DE CHC G-CMA-ES RPSO-vm
f1 0.00E+00 3.56E-11 0.00E+00 2.66E-14
2 4.45E+00 8.58E+01 1.51E-10 1.98E-01
3 8.01E+01 4.19E+06 3.88E+00 1.42E+4-03
f4 7.96E-02 2.19E+02 2.50E+02 2.61E-14
5 0.00E+00 3.83E-03 1.58E-03 1.07E-01
fo 3.10E-13 4.10E-07 2.12E+01 4.76E-12
7 0.00E+00 1.40E-02 4.22E-04 0.00E+00
8 3.69E+02 1.69E+4-03 0.00E+00 1.09E+04
9 5.06E+402 5.86E+402 1.02E+02 1.85E-01
10 0.00E+00 3.30E+01 1.66E+01 0.00E+00
f11 1.28E-04 7.32E+01 1.64E+02 4.61E-01
f12 5.99E-11 1.03E+01 4.17E+02 1.60E-14
f13 6.17E+01 2.70E+-06 4.21E+02 2.25E+03
f14 4.79E-02 1.66E+02 2.55E+02 1.27E-01
f15 0.00E+00 8.13E+00 6.30E-01 0.00E+00
f16 3.58E-09 2.23E+01 8.59E+4-02 4.87E-08
17 1.23E+01 1.47E+05 1.51E+03 1.76E+-03
f18 2.98E-04 7.00E+-01 3.07E+02 1.36E-01
f19 0.00E+00 5.45E+02 2.02E+01 0.00E+00

The Holm’s test with o = 0.05 (Table 7) showed
that DE, the algorithm with best ranking is statistically
better than all algorithms, excepting RPSO-vm with
p value=0.05.



Restart particle swarm optimization with velocity modulation

2229

Table 10 Mean errors obtained by DE, CHC, G-CMA-ES, and
RPSO-vm for dimension 200

Table 11 Mean errors obtained by DE, CHC, G-CMA-ES, and
RPSO-vm for dimension 500

f/Alg. DE CHC G-CMA-ES RPSO-vm f/Alg. DE CHC G-CMA-ES RPSO-vm
f1 0.00E+00 8.34E-01 0.00E+-00 2.53E-14 f1 0.00E+00 2.84E-12 0.00E+00 2.65E-14

2 1.92E+01 1.03E+4-02 1.16E-09 2.00E+00 2 5.35E401 1.29E+02 3.48E-04 1.67E4-01
3 1.78E+02 2.01E+07 8.91E+01 1.03E+03 3 4.76E+02 1.14E+06 3.58E+02 1.13E+03
4 1.27E-01 5.40E+02 6.48E+02 2.43E-14 4 3.20E-01 1.91E+03 2.10E+03 2.44E-14

5 0.00E+00 8.76E-03 0.00E+00 1.73E-01 f5 0.00E+00 6.98E-03 2.96E-04 2.54E-01

fo 6.54E-13 1.23E+00 2.14E+01 2.95E-12 f6 1.65E-12 5.16E+00 2.15E+01 3.14E-12

7 0.00E+00 2.59E-01 1.17E-01 0.00E+00 7 0.00E+00 1.27E-01 7.21E+153 0.00E+00
8 5.53E+03 9.38E+03 0.00E+00 5.23E+04 8 6.09E+04 7.22E+04 2.36E-06 3.00E+05
9 1.01E+03 1.19E+03 3.75E+02 1.67E+00 9 2.52E+03 3.00E+03 1.74E+03 4.85E+00
f10 0.00E+00 7.13E+01 4.43E4-01 0.00E+00 f10 0.00E+-00 1.86E+02 1.27E+02 0.00E+00
f11 2.62E-04 3.85E+02 8.03E+02 5.66E-01 f11 6.76E-04 1.81E+03 4.16E+03 4.88E+00
12 9.76E-10 7.44E+01 9.06E+02 4.64E-02 f12 7.07E-09 4.48E+02 2.58E+03 1.32E-08

f13 1.36E+02 5.75E+06 9.43E+02 1.17E+04 f13 3.59E+02 3.22E+07 2.87E+03 1.33E+03
f14 1.38E-01 4.29E+02 6.09E+02 7.96E-02 f14 1.35E-01 1.46E+03 1.95E+03 1.29E+4-00
f15 0.00E+00 2.14E+01 1.75E+400 0.00E+00 f15 0.00E+00 6.01E+-01 2.82E+262 0.00E+00
f16 7.46E-09 1.60E+02 1.92E+4-03 5.40E-01 f16 2.04E-08 9.55E+02 5.45E+03 2.12E4+00
f17 3.70E+01 1.75E+4-05 3.36E+03 2.08E+04 f17 1.11E+02 8.40E+05 9.59E+03 5.72E+02
f18 4.73E-04 2.12E4+02 6.89E+02 1.50E-01 f18 1.22E-03 7.32E402 2.05E+03 2.47E+00
19 0.00E+00 2.06E+03 7.52E+02 0.00E+00 19 0.00E+00 1.76E+03 2.44E+06 0.00E+00

5.2.2 Dimension 100

In this case, in spite of reaching DE the best mean error in
more functions than RPSO-vm and G-CMA-ES (see
Table 9), both Friedman’s and Holm’s test showed similar
results to dimension 50. That is, RPSO-vm and DE are
statistically similar to themselves, but better than CHC, and
G-CMA-ES.

5.2.3 Dimension 200

As shown in Table 10, the results are quite similar to the
previous ones of dimension 100. In fact, the same algo-
rithms (RPSO-vm, DE, and G-CMA-ES) obtained the best
mean errors practically in the same functions. Holm’s test
also obtained that DE is statistically similar to RPSO-vm
(p value = 0.05), and better than the rest of algorithms.

5.2.4 Dimension 500

Table 11 contains the mean errors of all algorithms in
dimension 500. We can see the set functions for which
RPSO-vm always obtained the best mean fitness: 4, {7, f9,
f10, f15, and f19. In particular Shifted Schwefel 2.22 (f7)
and its hybrids (f15 and f19) are optimized for all dimen-
sions. These functions are unimodal separable (f7) and
unimodal non-separable (f9, 10, f15, and 19) which could
lead us to think that RPSO-vm only has successful

Table 12 Mean errors obtained by DE, CHC, and RPSO-vm for
dimension 1,000

f/Alg. DE CHC RPSO-vm
f1 0.00E+00 1.36E-11 2.72E-14
2 8.46E+01 1.44E+4-02 4.29E+01
3 9.69E+402 8.75E+03 3.21E+02
4 1.44E+00 4.76E+03 4.81E-14
f5 0.00E+00 7.02E-03 2.14E-01
f6 3.29E-12 1.38E+01 4.92E-12
7 0.00E+00 3.52E-01 0.00E+00
8 2.46E+05 3.11E+05 9.35E+05
9 5.13E+03 6.11E+03 1.17E+01
f10 0.00E+00 3.83E+02 0.00E+00
f11 1.35E-03 4.82E+03 1.10E+01
f12 1.68E-08 1.05E+03 1.00E-09
13 7.30E+02 6.66E+4-07 1.93E+03
f14 6.90E-01 3.62E+03 5.27E-01
f15 0.00E+00 8.37E+01 0.00E+00
f16 4.18E-08 2.32E+03 9.50E-01
17 2.36E+02 2.04E+07 2.82E+03
f18 2.37E-03 1.72E+03 1.80E+00
19 0.00E+00 4.20E+03 0.00E+00

performance with unimodal functions, but we can easily
check that our proposal obtained the best results for f4
(multimodal), and for all dimensions. In addition, RPSO-
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vm obtained the second best mean fitness for the remaining
of hybrid functions (dimension 500). Statistically, Holm’s
test confirms our initial hypothesis since it showed
(Table 7) that the results of RPSO-vm are not significantly
different to the ones of DE (p value = 0.05), and they are
statistically better than the results of the rest of algorithms.

5.2.5 Dimension 1000

For the largest scale, Table 12 shows the mean errors where
RPSO-vm obtained the best results in 10 out of 19 functions.
As aforementioned, G-CMA-ES did not obtained any value
for dimension 1,000. Regarding dimension 500, the set of
functions for which RPSO-vm obtained the best mean fitness
has been increased with {2, f3, f12, and f14, having these
functions different properties of modality and separability.
As happened in all dimensions, in spite of having DE the best
average ranking, the Holm’s test (Table 7) showed RPSO-
vm is statistically similar to DE. In comparison with CHC,
our proposal is statistically the best algorithm.

From a graphical point of view, Fig. 1 illustrates the
tendency of results of the compared algorithms and
RPSO-vm for functions 2, {9, f14, and f19 through the
different dimensions. We have chosen these functions
since they showed a representative behavior in terms of
scalability.

Thus, we can observe in Fig. 1 that the performance of
all algorithms deteriorates with the increment of the
dimension. Nevertheless, this degradation is slight in
almost all cases, and even nonexistent in others, as hap-
pened in functions f2 and f19 for algorithms RPSO-vm and
DE. A different and anomalous behavior is observed in G-
CMA-ES for functions f2 and f19, where it diminishes
quickly. We suspect that the use of covariance matrix
mechanism of G-CMA-ES is unsuitable for large dimen-
sions due to the great amount of resources it requires
(Hansen et al. 2003; Knight and Lunacek 2007).

5.3 Computational effort

Finally, we present in this section some remarks about the
computational effort. To execute these experiments, we
have used the computers of the laboratories of the Depar-
tament of Computer Science of the University of Malaga
(Spain). Most of them are equipped with modern dual-core
processors, 1IGB RAM, and Linux so, having into account
that there are more than 180 computers, that means that up
to 360 cores have been available. To run all the programs,
we have used the Condor (Thain et al. 2005) middleware
that acts as a distributed task scheduler (each task dealing
with one independent run of RPSO-vm).

In Table 13, we present the average running time (sec-
onds) in which RPSO-vm has found the best mean error for
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Fig. 1 Scalable results of DE, CHC, G-CMA-ES, and RPSO-vm for
functions 12, {9, f14, and f19. Y axis shows the results in logarithmic
scale. X axis shows the problem dimensions

all functions and for all dimensions. As expected, the
running time increases with the number of variables, spe-
cially in non-separable functions. Specifically, f1 (Shifted
Sphere) required the lowest time to be optimized for all
dimensions, and f17 (Hybrid NS fO®f3) toke the longest
time. In general, hybrid composition functions required
more time to reach their best value than simple functions.
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Table 13 Average running time (ART), in seconds, of the 25 runs of
RPSO-vm for all functions and for all dimensions D

ART/D 50 100 200 500 1,000
f1 791E-01 3.33E400 1.36E4+01 8.42E+01 3.60E+402
2 2.72E+00 9.67E+00 4.10E+01 2.55E+02 9.37E+02
f3 6.30E+00 2.66E+01 9.85E+01 5.71E+02 2.50E+03
f4 2.82E+00 1.26E+01 5.50E+01 3.81E+02 1.52E+03
f5 2.19E+00 8.06E+00 3.82E+01 2.24E+02 8.60E+02
f6 4.82E400 1.65E4+01 7.43E+401 4.14E402 1.76E403
f7 242E+00 8.62E+00 3.58E+01 2.11E+02 8.72E+02
f8 2.27E+00 9.49E+00 3.41E+01 2.24E+02 8.02E+02
f9 9.05E4+00 3.28E+01 1.32E4+02 1.11E+03 3.19E+403
f10 4.14E400 1.79E4+01 6.40E4+01 4.12E+02 1.74E403
f11 9.23E400 3.61E4+01 143E+4+02 9.64E+02 3.92E+403
f12 4.17E400 1.59E4+01 6.63E4+01 4.04E+02 1.33E403
f13 7.44E400 2.76E401 9.97E+401 7.62E402 3.03E403
f14 5.91E+00 2.50E+01 9.30E+01 5.34E+02 2.20E+03
f15 2.78E+00 1.16E+01 4.43E+01 2.67E+02 8.90E+02
f16* 549E+00 2.20E+01 9.45E+01 6.09E+02 2.25E+03
f17%* 8.48E+00 3.13E+01 1.41E+02 7.00E+02 3.24E+03
f18%* 7.18E400 3.05E+01 1.23E4+02 7.47E+02 2.93E+403
f19* 4.01E400 1.38E4+01 6.15E401 3.61E4+02 1.43E+403
f2

1,00E+02 "

1,00E+01 7

1,00E+00 I/-

1,00E-01 / == TIME (seconds)

) 4 —m-MEAN ERROR

1,00E-02

1,00E-03 J

1,00E-04 4

50100 500 1000

Fig. 2 Differences in times versus mean error magnitudes of 2 for
each dimension. Y axis contains values in logarithmic scale and X axis
contains dimensions

In this sense, an interesting observation consists in
comparing the increment of both, the processing time and
the optimum mean error found, through the different scales
of the search space. This way, we can obtain insights about
the computational effort required with regards to the quality
of solutions obtained. Figure 2 shows a representative case
observed in function f2, where the increment of the pro-
cessing time as well as the mean error is practically linear. If
we take into account that the search space grows expo-
nentially with the dimension [xjoy, xupp]DlM in all functions,
we can claim that our proposal scales successfully. Con-
cerning the quality of solutions, the deterioration that the
mean error suffers is higher in comparison with the

processing time. Specifically, from dimension 200-500, the
mean error increases in two orders of magnitude while the
time required takes less than one order of magnitude.
Curiously, the difference in the mean error between 500 and
1,000 dimensions is not bigger than one order of magnitude
which leads us to suspect that our proposal performs rela-
tively better in larger dimensions than in smaller ones.

6 Conclusions

In this work, we have incorporated both velocity modulation
and restarting mechanisms to the PSO with the aim of
enhancing its scalability. Our hypothesis is that these two
new mechanisms can help the PSO to avoid the early con-
vergence and redirects the particles to promising areas in the
search space. The experimentation phase has been carried
out in the scope of this special issue to test the ability of
being scalable. The results obtained show that our proposal
is scalable in all functions of the benchmark used, as well as
highly competitive with regard to other compared optimiz-
ers. In concrete, we can remark the following:

the new proposal, called Restarting PSO with Velocity
Modulation (RPSO-vm), outperforms the basic PSO, as
well as PSO with each new mechanism separately, for all
dimensions. Additionally, the RPSO-vm algorithm with
global best neighborhood topology outperforms (/b)RPSO-
vm: they two are the same algorithm but one has a global
best (gbest) topology while the other has a variable
neighborhood (lbest) topology.

RPSO-vm shows a competitive performance in terms of
its scalability. In fact, it is the second best algorithm for all
dimensions and statistically similar to the best one in
comparison with provided algorithms in this Special Issue.
These algorithms: DE, CHC, and G-CMA-ES, are well-
known optimizers traditionally used for continuous opti-
mization and showing an excellent performance in other
bechmarks (CEC’05, CEC’08, BBOB’09, etc.).

RPSO-vm obtained the best results in functions {4, 7,
9, 10, f15, and f19 for all the dimensions. These functions
are all shifted and they have different properties of
modality, separability and composition. For the largest
dimension (1,000), the set of functions in which our
algorithm obtained the best results is increased with 2, {3,
f12, and f14.

In terms of computational effort, the running time
increases with the number of variables, specially in non-
separable and hybrid composition functions. Additionally,
we observed that from dimension 200-500 the mean error
increased in two orders of magnitude while the time
required takes less than one order of magnitude. The dif-
ference in the mean error between 500 and 1000 dimen-
sions is not bigger than one order of magnitude. This leads
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us to suspect that our proposal performs relatively better in
larger dimensions than in smaller ones.

In general, we can conclude that modifying PSO, a
simple well-known algorithm, we have reached a highly
accurate performance even in large scale environments. In
the light of these results, we are encouraged to follow
betting on PSO based algorithms in future works.
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