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B.4.4 Estudio del Número Óptimo de Informadores en PSO . . . . . . . . . . . . 192
B.4.5 Nueva Versión: PSO6 con MTS . . . . . . . . . . . . . . . . . . . . . . . . . 193

B.5 Aplicación a Problemas Reales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
B.5.1 Selección de Genes en Microarrays de ADN . . . . . . . . . . . . . . . . . . 193
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Chapter 1

Introduction

1.1 Motivation

One of the most important aspects in Computer Sciences Research consists in the analysis and
design of optimization algorithms for solving new and complex problems in an efficient way. The
main target in this field is then the development of new optimization methods able to solve the
aforementioned complex problems with a progressively lower computational effort, and therefore
improve the current best methods. As a consequence, the new algorithms allow scientists not only
tackling current problems in an efficient way, but also facing tasks that were unsolvable in the
past because of their prohibitive computational costs. In this context, researching on exact, ad hoc
heuristic, and metaheuristic techniques has attracted a lot of attention nowadays. The reason is
the increasing number of complex problems that are appearing in the industry and, at the same
time, the availability of new better computational resources, such as efficient multicore cluster
computers, cloud computing execution platforms, and other high performance environments.

The main advantage of exact algorithms is that they can guarantee the finding of an optimal
solution for any problem. However, despite an special emphasis still exists on that, there is a
wealth of problems for which there are not exact algorithms able of computing an optimal solution
in polynomial time, since the needed computing effort grows exponentially along with the problem
dimension. Such a group of problems is usually referred to as NP-hard. In contrast, ad hoc heuris-
tics are usually very fast in problem resolution, although obtaining in general moderate quality
solutions. Another drawback in Ad hoc heuristics is that they are not easy to define for certain
problems where a minimum knowledge (about the problem) is required, but not available, as com-
monly happens in black box problem optimization, and usually not allowing cross-fertilization to
other similar tasks, what is seen as an unstructured and effort loss in many applications. Meta-
heuristics on the contrary provide high quality solutions (many times the optima) in an acceptable
computing time, allowing structured proposal of techniques and easing cross-fertilization to other
domains (additional benefits). As a consequence, Industry (and not only Science) is more and more
conscious of these latter techniques, which have been used in a wide range of different applications.

In the context of metaheuristics, Swarm Intelligence (SI) approaches are becoming very popular
in the last years. SI techniques try to model the emergent behavior of simple collective agents
searching as a whole, with the aim of inducing the global learning procedure on the solution of
complex problems. In concrete, Particle Swarm Optimization (PSO) is possibly the most popular
algorithm in the family of SI procedures, since a huge amount of research publications concerning
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4 1.1. MOTIVATION

this technique have appeared since its original design by Kennedy and Eberhart in 1995 [KE95].
PSO is inspired by the sociological focus that collective learning and intelligence can originate
from human (or gregarious animal) social interactions within the living environment where they
participate. The algorithm is based on the concept that individuals refine their knowledge about
the search landscape through social interactions. Optimization patterns emerge when individuals
tend to imitate their prominent peers, then making up the intrinsic learning procedure. Each
individual, known as a particle in PSO, follows two basic decision rules: going back to the best
stage visited so far (individualism), and imitating the best particle found in its neighborhood
(conformism).

Particle swarm optimization shows a series of advantages that have given it increasing popularity
in the field of computational optimization. Between these advantages, the most relevant ones are
based on the facts that:

• it is easy to describe and implement [KE01],

• it does not requires extra computational effort for its own operation [KE01],

• it can be easily modified to manage different problem representations [MCP07],

• there exists a number of available implementations in different programming languages [PCG11],

• it requires few parameters to be tuned [ES00, Tre03],

• it usually performs a fast convergence to successful solutions [CK02],

• it shows an accurate performance on separable problems [LQSB06], and

• it has been used to tackle multitude of industrial real world problems [PKB07, SM09].

Although numerous studies have been carried out concerning the particle swarm optimization
algorithm, there is still a big room for research on this topic. In the first place, PSO based
algorithms still show a moderate performance prompted by premature convergence on complex
problems with several concrete features: non-separable, shifted, rotated, multimodal, and with
deceiving landscapes. A number of past works have attempted to mitigate these issues, although
with limited success for several reasons: they did not address the cause but they addressed the
effect, they were not duly compared with the current state of the art (just with other older PSO
versions), they did not use correct benchmark of functions to evaluate the new proposals (in most
of cases with few problems, with single local optima at the origin of coordinates), and they did not
use statistical procedures to validate their comparisons.

A way of dealing with these issues is to analyze the internal behavior of PSO by using runtime
evolvability measures with the aim of better understanding the learning procedure induced by
particles. Another way is to put the PSO to stress and scalability tests in order to identify its
main limitations on hard conditions. In this way, it is possible to design new operators and to
hybridize with other methods that lead the new proposals to reach a high degree of success on a wide
range of optimization problems. In this sense, working with numerous and heterogeneous problem
functions (and with different dimensions) to cover as much as possible the specific landscape
features that directly affect the PSO’s performance (non-separability, rotation, shifting, etc.) is a
must in order to evaluate the new proposals. In the second place, real world applications are more
and more complex and, frequently, involve pre/post processing operations or the use of software
simulators that increase the time required for evaluating a candidate solution. Then, the design of
advanced PSO models able of computing accurate solutions in a fast manner is to be faced as a
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final stress test. A way of fulfilling that requirement is to make use of parallelism for speeding-up
the execution time of PSO. Another way is to develop new more advanced PSO versions able of
computing accurate representation of solutions in a bounded number of function evaluations.

Our motivation in this thesis is twofold. These steps are in fact part of the present PhD The-
sis plan. First, we are interested in designing new Particle Swarm Optimization proposals that
solve or mitigate the main disadvantages present in this algorithm. To this point, we have used
a series of methodologies to analyze the internal behavior of this algorithm and to identify the
main problems or improvement opportunities appearing in existing PSO versions. In order to as-
sess the effectiveness of the new proposals, we have performed comparative studies from two main
points of view: solution quality and scalability in terms of the problem size (decision variables).
For this task we have followed specific experimental procedures of standard benchmark test suites
(CEC’05, SOCO’10, DTLZ, etc.), and we have compared against the most prominent metaheuris-
tics in current state of the art. Second, we are aimed at solving real world complex problems
with PSO based algorithms to determine the adaptability of this algorithm to different represen-
tations and scenario conditions, within limited computational time, and requiring huge data base
management. In concrete, we have focused in this thesis on three NP-Hard real applications try-
ing to cover quite different industry fields: Gene Selection in DNA Microarrays (Bioinformatics),
Communication Protocol Tuning in VANETs (Telecommunications), and Signal Lights Timing in
traffic management (Urban Mobility).

Figure 1.1: Conceptual cloud involving the PSO that we have covered in this PhD Thesis

As a global target of this PhD Thesis, we are interested on investigating the Particle Swarm
Optimization from a wide spectrum of algorithmic aspects, with the aim of determining the general
purpose capabilities of this algorithm. Figure 1.1 illustrates the conceptual cloud involving the PSO
that we have covered in this thesis. Finally, as a product, all that work has also led the development
of a software in the scope of MALLBA library, aimed at supporting the design and development of
metaheuristics. In addition, a number of realistic problem instances, simulation rule files, software
scripts, and free web sites have been generated and are available.
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1.2 Objectives and Phases

This thesis considers the analysis of the Particle Swarm Optimization, as well as the design and
implementation of new proposals based on this algorithm. This work also addresses the resolution
of complex optimization problems with PSO in the domains of: DNA Microarrays, VANETs
Communication Protocols, and Signal Lights Timing Programs. These general objectives can be
detailed into more specific goals as follows:

• Analyze current particle swarm optimization versions and identify the most important defi-
ciencies it shows on complex optimization.

• Design of new PSO proposals by means of alternative velocity formulations, adapted mech-
anisms, hybridization with other techniques, and with multi-objective focus.

• Analyze evolvability, scalability, and efficiency issues in existing and new PSO versions.

• Validate our findings in previous points for solving real-world problems.

• Develop innovative approaches that enhance the performance of current PSO, and other
optimization techniques, either from the perspective of the quality of the solutions produced,
or from the perspective of the computational effort required to reach them. Demonstrate
their effectiveness through statistically assessed experimental evaluation.

In order to fulfil these thesis objectives, the work has been carried out as follows. Firs, we have
surveyed the concepts of metaheuristics and, in concrete, particle swarm optimization. Then, we
have focused on identifying deficiencies of PSO on different problem’s landscape characterizations
and scalability conditions. After this, we have proposed advanced design issues with optimized
learning procedures, with new operators, and hybridizing with other techniques, giving rise to
improved versions of PSO (actually to new kinds of algorithms). Secondly, we have applied PSO,
as well as other optimization algorithms, for solving the three aforementioned real-world problems
taken from different disciplines of Engineering.

1.3 PhD Thesis Contributions

The contributions of this thesis are mainly devoted to the research field of Swarm Intelligence.
However, additional interesting contributions can be also highlighted in the research fields of DNA
microarrays, communication protocols in VANETs, and in traffic management with signal lights
programming. These contributions can be summarized as follows:

• Thorough review and development of Canonical and Standards of PSO (2006, 2007, and
2011), current versions (FIPS, CLPSO, wPSO, GPSO, etc.), and new proposals made in the
scope of the MALLBA library of metaheuristics.

• Analysis of PSO and DE basic operations and proposal of DEPSO, a hybrid PSO that makes
use of DE operators.

• Proposal and scalability analysis of RPSO-vm, a restarting PSO with velocity modulation
procedure.

• Analysis of different variants of multi-objective PSO. Proposal of SMPSO, a multi-objective
PSO with velocity modulation.
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• Sensitive analysis of the number of informants involved in the learning procedure of PSO. A
number of six informants (PSO6) is suggested as the new standard base algorithm.

• Proposal of PSO6-Mtsls, a particle swarm with optimized informants that is hybridized with
MTS-LS1, Multiple Trajectory Search local search.

• Comparative analysis of all proposed techniques with the current state of the art, in the
context of standard benchmark frameworks (CEC’05, SOCO’10, BBOB’09, DTLZ, etc.).

• Proposal of a parallel extension of Geometric PSO for Gene selection in DNA Microarrays.
Evaluation on real gene expression of cancer data sets.

• Realistic modeling of representative problems: Tuning of Communication Protocols in VANETs
and Signal Lights Timing Programming, both in urban areas. Evaluation of standard and
integer encoding PSO versions on the resolution of these two problems.

• Creation of large size real-world instances on urban scenarios for Tuning of Communication
Protocols in VANETs and Signal Lights Timing Programs. These instances were designed
as simulation components to the well-known communication and traffic simulators ns2 and
SUMO, respectively.

In addition, a number of scientific articles have been published during the years in which this
thesis has been developed that support and validate the impact of these contributions on the
scientific community and literature. These publications have appeared in impact journals and
fora, and have been subjected to peer review by expert researchers, summing up more than 38
research papers: 10 journal articles indexed by ISI-JCR (3 of them under review), 2 international
journal articles, 5 book chapters and papers in LNCS Series, and 19 conference papers (references
to these publications can be found in Appendix A).

1.4 Thesis Organization

This thesis work has a double orientation: from algorithmics and towards the application domain,
and this reflects into its structure as a document. Thus, this volume is divided into five parts. In
the first part we present the fundamentals and basis for the work, metaheuristics as a global family
of resolution techniques, the particle swarm optimization as particular algorithm to study, and the
methodology that we have employed for assessing and validate the numerical results. The second
part is devoted to the analysis, design, and evaluation of our proposals. Comparisons with the state
of the art in the scope of standard benchmarks are also performed in this part. The third part is
devoted to the problems tackled in this thesis: models, mathematical/computational formulations,
instances and results are described and validated. Literature concerning the problem domains is
also reviewed in this part. The fourth part recaps the main conclusions drawn throughout the
work and gives global comments. Finally, the fifth part contains two appendices concerning the
publications derived from this thesis work, as well as a summary in Spanish language.

• Part I. Motivations and Fundamentals

– Chapter 2 introduces the main concepts in the research field of Optimization and Meta-
heuristics, including classifications and emphasizing Swarm Intelligence algorithms. In
the last subsection, the standard statistical validation procedure employed in all the
experiments is detailed.
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– Chapter 3 is devoted to present the Particle Swarm Optimization in detail, describing
canonical and standard versions of PSO, giving theoretical aspects of its different formu-
lations, enumerating a set of prominent versions of this algorithm, as well as other related
techniques. A final part of this chapter concentrates on the usual standard benchmarks
of functions employed for the experimentation phases in the following chapters.

• Part II. Algorithm Proposals and Validation

– Chapter 4 addresses the hybridization of PSO with DE to propose the DEPSO algo-
rithm. This chapter starts by describing the new algorithm formulation, and directly
goes to the experimental procedure applied to evaluate its performance. In this sense,
an extensive set of functions were used consisting on: CEC’05 benchmark test suite,
and noisy/noisiless functions of BBOB’09. A series of analysis concerning the different
function’s features and comparisons against other algorithms are then performed.

– Chapter 5 presents the Restarting PSO with Velocity Modulation (RPSO-vm), designed
to tackle with large scale continuous optimization problems. A scalability tests is applied
to this proposal in the scope of special issue of SOCO’10. A series of comparisons and
analysis from the point of view of the computational effort are also carried out.

– Chapter 6 enumerates the most prominent multi-objective PSO (MOPSO) versions and
evaluate them on three well-known problem families. After this, our new proposal,
Speed Modulation PSO (SMPSO), is then described and evaluated with regards to
these previous MOPSO versions and NSGAII.

– Chapter 7 contains one of the most interesting investigations performed in this thesis.
The chapter starts by empirically analyzing the specific number of informant particles
that can provide the PSO with an optimized learning procedure, on a big number of
different problem functions. After this, an runtime analysis from the point of view of the
evolvability is performed with the aim of shedding some light on why certain number
of informants (around six) is the best option in the formulation of PSO. Finally, the
resulted baseline method PSO6 is hybridized with MTS to generate a new candidate
proposal PSO6-Mtsls, aimed at constituting the current state of the art on an extensive
benchmark of problem functions (CEC’05+SOCO’10).

• Part III. Real World Applications

– Chapter 8 presents the problem of Gene Selection in DNA Microarrays, and the Parallel
Multi-Swarm Optimization (PMSO) algorithm proposed to solve it. This algorithm is
based on the binary version of Geometric PSO (GPSO), which has been proven to be
specially well adapted to the feature selection problem. The effectiveness of PMSO is
analyzed on four well-known public datasets, discovering new and biologically challeng-
ing gene subsets, and identifying specific genes that our work suggests as significant
ones. Comparisons with several recent state of art methods show the effectiveness of
our results in terms of computational time/effort, reduction percentage, and classifica-
tion rate. A further biological analysis validates our results, since they independently
confirm the relevant genes also found in reference works in Biology.

– Chapter 9 addresses the application of PSO to the efficient Tuning of Communication
Protocols in VANETs. The chapter starts with a survey of the literature, and the prob-
lem formulation related to the faced VDTP communication protocol. Several analysis
and comparisons are then performed from the point of view of the network QoS and the
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problem scalability, on different realistic scenarios. Resulted protocol configurations are
also compared against human experts ones on real applications.

– Chapter 10 introduces the problem of Signal Lights Timing Programs in vehicular traffic
urban environments. After the literature overview and the problem formulation, the
optimization strategy is presented, what includes an integer encoding PSO coupled with
SUMO simulator. Two traffic instances have been generated for the cities of Malaga
and Bah́ıa Blanca. Performance comparisons are carried out from the point of view
of fitness quality, and on different scaling scenarios. Resulted timing programs are
favourably compared against the ones using human expert information.

• Part IV. Conclusions

– Chapter 11 contains a global review of the thesis work, and revisits the main conclusions
drawn. The thesis objectives and main contributions are then discussed in view of the
results obtained. Lastly, the future lines of research are briefly sketched and discussed.

• Part V. Appendices

– Appendix A presents the set of related works that have been published during the years
in which this thesis work has been carried out.

– Appendix B is a summary of this volume in Spanish language.

– The remaining appendices contain: the list of tables, the list of figures, the list of
algorithms, the index of terms, and the bibliography.
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Chapter 2

Fundamentals of Metaheuristics

2.1 Metaheuristics

This PhD Thesis will develop in the domain of advanced algorithms and metaheuristics in par-
ticular [Gol89, Glo03]. A metaheuristic is a high level technique or algorithm for solving complex
optimization problems. They are stochastic algorithms which do not guarantee to obtain the opti-
mal solution of a given problem, but when properly tuned allow to obtain near-optimal solutions,
often the optimal one, with bounded computation effort.

We will proceed in several steps, from the problem to the techniques to solve it. First, let
us give a formal definition of an optimization problem. Assuming, without loss of generality, a
minimization case, the definition of an optimization problem is as follows:

Definition 2.1.1 (Optimization problem). An optimization problem is defined as a pair (S, f),
where S 6= ∅ is called the solution space (or search space), and f is a function named objective
function or fitness function, defined as:

f : S → R . (2.1)

Thus, solving an optimization problem consists in finding a solution i∗ ∈ S such that:

f(i∗) ≤ f(i), ∀ i ∈ S . (2.2)

Note that assuming either maximization or minimization does not restrict the generality of the
results, since an equivalence can be made between the two cases in the following manner [Gol89,
B9̈6]:

max{f(i)|i ∈ S} ≡ min{−f(i)|i ∈ S} . (2.3)

Depending on the domain which S belongs to, we can speak of binary (S ⊆ B
∗), integer

(S ⊆ N
∗), continuous (S ⊆ R

∗), or heterogeneous optimization problems (S ⊆ (B ∪ N ∪ R)∗).
A simple classification of the optimization methods used throughout the history of Computer

Science is shown in Figure 2.1. In a first approach, the techniques can be classified into Exact
and Approximate. Exact techniques, which are based on the mathematical finding of the optimal
solution, or an exhaustive search until the optimum is found, guarantee the optimality of the

11
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obtained solution. However, these techniques present some drawbacks. The time they require,
though bounded, may be very large, especially for NP-hard problems. Furthermore, it is not
always possible to find such an exact technique for every problem. This makes exact techniques
not to be a good choice in many occasions, since both their time and memory requirements can
become unreasonably high for large scale problems. For this reason, approximate techniques have
been widely used by the international research community in the last few decades. These methods
sacrifice the guarantee of finding the optimum in favor of providing some satisfactory solution
within reasonable times.

Figure 2.1: General classification of optimization techniques

Among approximate algorithms, we can find two types: ad hoc heuristics, and metaheuristics.
We focus this chapter on the latter, although we mention before Ad hoc heuristics, which can in
turn be divided into constructive heuristics and local search methods . Constructive heuristics are
usually the swiftest methods. They construct a solution from scratch by iteratively incorporating
components until a complete solution is obtained, which is returned as the algorithm output.
Finding some constructive heuristic can be easy in many cases, but the obtained solutions are of
low quality in general since they use simple rules for such construction. In fact, designing one such
method that actually produces high quality solutions is a nontrivial task, since it mainly depends
on the problem, and requires thorough understanding of it. For example, in problems with many
constraints it could happen that many partial solutions do not lead to any feasible solution.

Local search or gradient descent methods start from a complete solution. They rely on the
concept of neighbourhood to explore a part of the search space defined for the current solution
until they find a local optimum. The neighbourhood of a given solution s, denoted as N(s),
is the set of solutions (neighbours) that can be reached from s through the use of a specific
modification operator (generally referred to as a movement). A local optimum is a solution having
equal or better objective function value than any other solution in its own neighbourhood. The
process of exploring the neighbourhood, finding and keeping the best neighbour, is repeated in
a process until the local optimum is found. Complete exploration of a neighbourhood is often
unapproachable, therefore some modification of this generic scheme has to be adopted. Depending
on the movement operator, the neighbourhood varies and so does the manner of exploring the
search space, simplifying or complicating the search process as a result.
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During the 70’s, a new class of approximate algorithms appeared whose basic idea was to com-
bine operations in a structured (family-like) way in a higher level to achieve an efficient and effective
search of the problem landscape. These techniques are called metaheuristics . The term was first
introduced by Glover [Glo86], and until it was ultimately adopted by the scientific community,
these techniques were named modern heuristics [Ree93]. This class of algorithms includes many
diverse techniques such as ant colony, evolutionary algorithms, iterated local search, simulated
annealing, and tabu search. A survey of metaheuristics can be found in [BR03, Glo03]. Out of the
many descriptions of metaheuristics that can be found in the literature, the following fundamental
features can be highlighted:

• They are general strategies or templates that guide the search process.

• Their goal is to provide an efficient exploration of the search space to find (near) optimal
solutions.

• They are not exact algorithms and their behavior is generally non deterministic (stochastic).

• They may incorporate mechanisms to avoid visiting non promising (or already visited) regions
of the search space.

• Their basic scheme has a predefined structure.

• They may use specific problem knowledge for the problem at hand, by using some specific
heuristic controlled by the high level strategy.

In other words, a metaheuristic is a general template for a non deterministic process that has
to be filled with specific data from the problem to be solved (solution representation, specific
operators to manipulate them, etc.), and that can tackle problems with high dimensional search
spaces. In these techniques, the success depends on the correct balance between diversification
and intensification. The term diversification refers to the evaluation of solutions in distant regions
of the search space (with some distance function previously defined for the solution space); it is
also known as exploration of the search space. The term intensification refers to the evaluation of
solutions in small bounded regions, or within a neighbourhood (exploitation of the search space).
The balance between these two opposed aspects is of the utmost importance, since the algorithm
has to quickly find the most promising regions (exploration), but also those promising regions have
to be thoroughly searched (exploitation).

We can distinguish two kinds of search strategy in metaheuristics. First, there are “intelligent”
extensions of local search methods (trajectory-based metaheuristics in Figure 2.1). These tech-
niques add some mechanism to escape from local optima to the basic local search method (which
would otherwise stick to it). Tabu search (TS) [Glo86], iterated local search (ILS) [Glo03], variable
neighbourhood search (VNS) [MH97] or simulated annealing (SA) [KGV83] are some techniques of
this kind. These metaheuristics operate with a single solution at a time, and one (or more) neigh-
bourhood structures. A different strategy is followed in ant colony optimization (ACO) [Dor92],
particle swarm optimization (PSO) [Cle10] or evolutionary algorithms (EA) [Glo03]. These tech-
niques operate with a set of solutions at any time (called colony, swarm or population, depending
on the case), and use a learning factor as they, implicitly or explicitly, try to grasp the correlation
between design variables in order to identify the regions of the search space with high-quality so-
lutions (population-based techniques in Figure 2.1). In this sense, these methods perform a biased
sampling of the search space.
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A formal definition of metaheuristics can be found in [Luq06], with an extension in [Chi07].
The complete formulation with the concepts of state, dynamics, and execution of a metaheuristic
are presented in the following definitions.

Definition 2.1.2 (Metaheuristic). A metaheuristic M is a tuple consisting of eight components
as follows:

M = 〈T ,Ξ, µ, λ,Φ, σ,U , τ〉 , (2.4)

where:

• T is the set of elements operated by the metaheuristic. This set contains the search space,
and in many cases they both coincide.

• Ξ = {(ξ1, D1), (ξ2, D2), . . . , (ξv, Dv)} is a collection of v pairs. Each pair is formed by a state
variable of the metaheuristic and the domain of said variable.

• µ is the number of solutions operated byM in a single step.

• λ is the number of new solutions generated in every iteration ofM.

• Φ : T µ ×
v∏

i=1

Di × T λ → [0, 1] represents the operator that produces new solutions from the

existing ones. The function must verify for all x ∈ T µ and for all t ∈
∏v

i=1 Di,
∑

y∈T λ

Φ(x, t, y) = 1 . (2.5)

• σ : T µ × T λ ×
v∏

i=1

Di × T µ → [0, 1] is a function that selects the solutions that will be

manipulated in the next iteration of M. This function must verify for all x ∈ T µ, z ∈ T λ

and t ∈
∏v

i=1 Di,
∑

y∈T µ

σ(x, z, t, y) = 1 , (2.6)

∀y ∈ T µ, σ(x, z, t, y) = 0 ∨ σ(x, z, t, y) > 0 ∧ (2.7)

(∀i ∈ {1, . . . , µ}, (∃j ∈ {1, . . . , µ}, yi = xj) ∨ (∃j ∈ {1, . . . , λ}, yi = zj)) .

• U : T µ × T λ ×
v∏

i=1

Di ×
v∏

i=1

Di → [0, 1] represents the updating process for the state variables

of the metaheuristic. This function must verify for all x ∈ T µ, z ∈ T λ and t ∈
∏v

i=1 Di,
∑

u∈∏v
i=1 Di

U(x, z, t, u) = 1 . (2.8)

• τ : T µ ×
v∏

i=1

Di → {false, true} is a function that decides the termination of the algorithm.

The previous definition represents the typical stochastic behavior of most metaheuristics. In
fact, the functions Φ, σ and U should be considered as conditional probabilities. For instance, the
value of Φ(x, t, y) is the probability to generate the offspring vector y ∈ T λ, since the current set
of individuals in the metaheuristic is x ∈ T µ, and its internal state is given by the state variables
t ∈

∏v
i=1 Di. One can notice that the constraints imposed over the functions Φ, σ and U enable

them to be considered as functions that return the conditional probabilities.
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2.1.1 Classification of Metaheuristics

There are many ways to classify metaheuristics [BR03]. Depending on the chosen features we
can obtain different taxonomies: nature inspired vs. non nature inspired, memory based vs.
memoryless, one or several neighbourhood structures, etc. One of the most popular classifications
distinguishes trajectory based metaheuristics from population based ones. Those of the first type
handle a single element of the search space at a time, while those of the latter work on a set
of elements (the population). This taxonomy is graphically represented in Figure 2.2, where the
most representative techniques are also included. A subgroup in population based metaheuristics
can be labeled as Swarm Intelligence approaches, which are characterized to perform population
dynamics inspired on collective behaviors of animals in Nature (bees, ants, birds, etc.). The next
two sections describe these kinds of metaheuristic.

Figure 2.2: Classification of metaheuristics

Trajectory Based Metaheuristics

This section serves as a brief introduction to trajectory based metaheuristics. The main feature of
these methods is the fact that they start from a single solution, and by successive neighbourhood
explorations, update that solution, describing a trajectory through the search space. Most of this
algorithms are extensions of the simple local search, which incorporates some additional mechanism
for escaping local optima. This results in a more complex stopping condition than the simple
detection of a local optimum. Widely used stopping criteria are completing some predefined number
of iterations, finding some acceptable solution, or reaching some stagnation point.

• Simulated Annealing (SA)

Simulated Annealing (SA) was introduced in [KGV83], and is one of the oldest techniques among
metaheuristics, and the first algorithm with an explicit strategy for escaping local optima. Its
origins can be found in a statistical mechanism, called metropolis. The main idea in SA is to
simulate the annealing process of a metal or glass. To avoid getting stuck in a local optimum, the
algorithm always allows the selection of a solution with worse fitness value than the current one
with some probability. The mechanism works as follows: in each iteration a solution s′ is extracted
from the neighbourhood N(s) of current solution s; if s′ has better fitness value than s, then s is
discarded and s′ is kept instead, otherwise s is replaced by s′ only with a given probability that
depends on a dynamic parameter T called temperature, and the difference between the fitness
values of the two solutions, f(s′)− f(s).
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• Tabu Search (TS)

Tabu Search (TS) is one of the metaheuristics that has been most successfully used to solve
combinatorial optimization problems. The basics of this method were introduced in [Glo86]. The
main idea in TS is the use of an explicit search history (short term memory), that serves both
for escaping from local optima and for enhancing the diversity of the search process. This short
term memory is called the tabu list, and keeps record of the last visited solutions, preventing the
algorithm from visiting them again. At the end of each iteration, the best solution among the
allowed ones is included in the list.

From the perspective of the implementation, keeping a list of full solutions is inefficient due
to wasted memory consumption. Therefore, a commonly adopted alternative is to register the
movements performed by the algorithm instead. In any case, the elements in the list can be used
to filter the neighbourhood, producing a reduced set of eligible solutions named Na(s). Storing
movements instead of complete solutions is more efficient, but causes a loss of information as well.
In order to avoid this problem, an aspiration criterion is defined that permits the inclusion of a
solution in Na(s) despite that solution being in the tabu list. The most widely used aspiration
criterion is to permit solutions with better fitness values than the best fitness found so far.

• GRASP

Greedy Randomized Adaptive Search Procedure (GRASP) [FR95] is a simple metaheuristic that
combines constructive heuristics with local search. GRASP is an iterative procedure with two
phases: first, a solution is constructed; second, the solution undergoes an improvement process.
The improved solution is the final result of the search process. A randomized heuristic is used for
the construction of the solution in the first phase. Step by step, different components c are added
to the partial solution sp, initially empty. Each added component is randomly selected from a
restricted list of candidates (RCL). This list is a subset of N(sp), the set of permitted components
for the partial solution sp. The components of the solution in N(sp) are sorted according to some
problem dependent function η in order to generate the list.

The RCL contains the α best components in the set. In the extreme case of α = 1, only the
best component found is added to the list, thus resulting in a greedy construction method. In the
other extreme, α = |N(sp)|, the component is chosen in a totally random way among all available
components. Hence, α is a key parameter that determines how the search space is going to be
sampled.

The second phase of the algorithm consists in a local search method to improve the previously
generated solutions. A simple local search heuristic can be employed, or some more complex
technique like SA or TS.

• Variable neighbourhood Search (VNS)

Variable neighbourhood Search (VNS) is a metaheuristic proposed in [MH97], that uses an explicit
strategy to switch among different neighbourhood structures during the search. It is a very generic
algorithm with many degrees of freedom to design variations or particular instances.

The first step is to define the set of neighbourhood descriptions. There are many ways this can
be done: from random selection up to complex mathematical equations deduced using problem
knowledge. Each iteration contains three phases: selection of a candidate, improvement phase,
and finally, the movement. During the first phase, a neighbour s′ is randomly chosen in the kth

neighbourhood of s. This solution s′ acts then as the starting point for the second phase. Once
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the improvement process is over, the resulting solution s′′ is compared with the original, s. If s′′ is
better then it becomes the current solution and the neighbourhood counter is reset (k ← 1); if it
is not better, then the process is repeated for the next neighbourhood structure (k ← k + 1). The
local search can be considered as the intensity factor, whereas the switches among neighborhoods
can be considered as the diversity factor.

• Iterated Local Search (ILS)

The Iterated Local Search (ILS) metaheuristic [Glo03] is based on a simple yet effective concept.
At each iteration, the current solution is perturbed and, to this new solution, a local search method
is applied, to improve it. An acceptance test is applied to the local optimum obtained from the
local search to determine whether it will be accepted or not. The perturbation method has an
obvious importance: if it is not disruptive enough, the algorithm may still be unable to escape
the local optimum; on the other side, if it is too disruptive, it can act as a random restarting
mechanism. Therefore, the perturbation method should generate a new solution that serves as
the starting point for the local search, but not so far away from the current solution as to be a
random solution. The acceptance criterion acts as a balance method, since it filters new solutions
to decide which can be accepted depending on the search history and the characteristics of the
local optimum.

• Multiple Trajectory Search (MTS)

TheMultiple Trajectory Search (MTS) is a modern trajectory based metaheuristic initially designed
for multi-objective optimization showing accurate results in this domain [TC09]. However, it is
currently becoming popular for large scale continuous optimization [TC08], since it showed the
best performance in the special session on Large Scale Global Optimization of CEC’08 [TYS+07].

In MTS, after an initialization phase using simulated orthogonal array (SOA), a number of
three different local search procedures are applied to each individual and selects the best from the
three new solutions. Local Search 1 searches along one dimension from the first dimension to the
last dimension. Local Search 2 is similar to Local Search 1 except that it searches along about
one-fourth of dimensions. In both local search methods, the search range (SR) will be cut to
one-half until it is less than certain 0-threshold (usually 1.0E−15) if the previous local search does
not make improvement. In Local Search 1, on the dimension concerning the search, the solution’s
coordinate of this dimension is first subtracted by SR to see if the objective function value is
improved. If it is, the search proceeds to consider the next dimension. If it is not, the solution is
restored and then the solution’s coordinate of this dimension is added by 0.5·SR, again to see if the
objective function value is improved. If it is, the search proceeds to consider the next dimension.
If it is not, the solution is restored and the search proceeds to consider the next dimension. Local
Search 3 considers three small movements along each dimension and heuristically determines the
movement of the solution along each dimension. In Local Search 3, although the search is along
each dimension from the first dimension to the last dimension, the evaluation of the objective
function value is done after searching all the dimensions, and the solution will be moved to the
new position only if the objective function has been improved at this current evaluation.

Population Based Metaheuristics

Population based methods are characterized by working with a set of solutions at a time, usually
named the population, unlike trajectory based methods, which handle a single solution. We here
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Table 2.1: Different Types of EAs
Name Representation Details
Evolutionary Programming (EP) Real values Mutation and (µ + λ) Selection

Evolution Strategies (ES)
Real values and Mutation, Recombination, and (µ + λ)
strategy parameters or (µ, λ) Selection

Genetic Algorithms (GA) Binary and Real values Mutation, Recombination, and Selection
Genetic Programming (GP) A computer program Mutation, Recombination, and Selection

make a brief survey to some relevant techniques for this thesis; the interested reader can get more
information in [Glo03] and [BR03].

• Evolutionary Algorithms (EA)

Evolutionary Algorithms (EAs) are loosely inspired on the theory of the natural evolution of the
species. The techniques in this wide family follow an iterative stochastic process that operates a
population (set) of tentative solutions, referred to as individual within this context, attempting to
generate new tentative solutions with higher and higher fitness.

The general template of an EA has three phases, named after their natural equivalents: selec-
tion, reproduction and replacement. The whole process is repeated until some stopping criterion
is met (generally, after a certain number of operations has been performed). The selection phase
selects the fittest individuals from the current population, to be recombined later during the re-
production phase. Different kinds of selection strategies exist: roulette wheel, tournament, random,
(µ+λ), or (µ, λ), where µ represents the number of parent solutions and λ the number of generated
children. The resulting individuals from the recombination are modified by a mutation operator.
Thus, the reproduction phase can be divided into two sub-phases: recombination and mutation.
This are the usual operations in genetic algorithms, the rest of EAs having other so called “varia-
tion operators” like local search or ad-hoc techniques. Finally, the new population is formed with
individuals from the current one, and/or the best newly generated individuals (according to their
fitness or suitability values). This new population is used as the current population in the next
iteration of the algorithm.

Depending on the individual representation and on how these phases are implemented, differ-
ent instances of EAs arise. Table 2.1 summarizes the three major instantiation of EAs, namely
Evolutionary Programming (EP), Evolution Strategy (ES), Genetic Algorithm (GA), and Genetic
Programming (GP), and highlights their major differences.

• Estimation of Distribution Algorithms (EDA)

Estimation of Distribution Algorithms (EDAs) [LLIB06] have a similar behavior with respect to the
previously presented EAs, and many authors even consider EDAs as a special kind of EA. Like EAs,
EDAs operate on a population of candidate solutions, but, unlike them, do not use recombination
and mutation to generate the new solutions, but a probability distribution mechanism instead.

Graphic probabilistic models are commonly used tools to represent in an efficient manner the
probability distributions when working with EDAs. Bayesian networks are usually to represent
the probability distributions in discrete domains, while Gaussian networks are most often applied
for continuous domains.
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• Scatter Search (SS)

Scatter Search (SS) is another metaheuristic whose basic principles were presented in [Glo98], and is
currently receiving an increasing deal of attention from the research community. The algorithm’s
fundamental idea is to keep a relatively small set of candidate solutions (called the reference
set, or RefSet for short), characterized by hosting diverse (distant in the search space) high-
quality solutions. Five components are required for the complete definition of SS: initial population
creation method, reference set generation method, subsets of solutions generation method, solution
combination method, and improvement method. This algorithm is explicitly incorporating the
exploration/exploitation idea in concrete steps and operations of its improvement loop.

• Ant Colony Optimization (ACO)

Ant Colony Optimization (ACO) [Dor92] is a swarm intelligent algorithm inspired by the foraging
behavior of real ants in the search for food. This behavior can be described as follows: initially,
ants explore the surrounding area of their nest or colony in a random fashion. As soon as an ant
finds a food source, it starts carrying that food to the nest; as it does this, the ant continuously
deposits a chemical known as pheromone in its path. The pheromone can be detected by other
ants, thus guiding them to the food. This indirect communication among ants also serves to find
the shortest path between the nest and the food.

ACO methods simulate this behavior to solve optimization problems. These techniques have
two main phases: construction of a solution following a single ant’s behavior, and updating of the
artificial pheromone trail. There is no a priori synchronization between the phases, which can
even be done simultaneously. These are powerful algorithms especially for searching in problems
whose solutions are modeled as paths in a graph.

• Artificial Bee Colony (ABC)

The Artificial Bee Colony (ABC) [KB07] is a swarm intelligent metaheuristic, in which the position
of a food source represents a possible solution to the optimization problem and the nectar amount
of a food source corresponds to the quality (fitness) of the associated solution.

In ABC, at the first step, a randomly distributed initial population (food source positions)
is generated. After initialization, the population is subjected to repeat the cycles of the search
processes of the employed, onlooker, and scout bees, respectively. An employed bee produces
a modification on the source position in her memory and discovers a new food source position.
Provided that the nectar amount of the new one is higher than that of the previous source, the
bee memorizes the new source position and forgets the old one. Otherwise, she keeps the position
of the one in her memory. After all employed bees complete the search process, they share the
position information of the sources with the onlookers on the dance area. Each onlooker evaluates
the nectar information taken from all employed bees and then chooses a food source depending on
the nectar amounts of sources.

2.1.2 Extended Models

In this section we discuss some techniques to allow the basic metaheuristic algorithms solve complex
real problems; this is much needed, since the basic sheets for search is very general for them, and
some lines of improvement are needed to actually face efficient resolution of complex problems.
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The techniques we will mention here are relevant to our work; in particular we will describe
some basics on hybridization, parallelization, and multi-objective resolution.

• Hybrid Metaheuristics

In recent years it has become evident that a skilled combination of a metaheuristic with other
optimization techniques, a so called hybrid metaheuristic [Dav01], can provide a more efficient
behavior and a higher flexibility. This is because hybrid metaheuristics combine their advantages
with the complementary strengths of, for example, more classical optimization techniques such as
branch and bound or dynamic programming.

A possible characterization of hybrid metaheuristic given in [BR03] is as follows: a technique
that results from the combination of a metaheuristic with other technique/s for optimization, such
as: metaheuristics, problem-specific algorithms or simulators, artificial intelligent or operational
research techniques, and even, human interactions. There are several classifications of hybrid
metaheuristics [DS03, BR03, NCM11, Rai06] focusing on different design issues: level of coupling
techniques (weak, strong), control strategy (collaborative, integrative), and order of execution
(sequential, interleaved, and parallel).

When hybridizing metaheuristics, the most common goal is to provide new algorithms with
both, diversification and intensification abilities. This is usually approached by incorporating tra-
jectory search methods into population based techniques. A representative kind of these techniques
are the so called Memetic Algorithms [NCM11], consisting on the application of local search to
individuals in evolutionary algorithms. Other approaches consider the two-stage (or n-stage) hy-
bridization, in which a metaheuristic operates in a first stage of execution, and giving the control
of the optimization procedure to other different technique in the second stage.

• Parallel and Distributed Metaheuristics

Even though the use of metaheuristics alone can significantly reduce the complexity and time
length of the search process, that time can still remain too large for some real problems. With the
development of cheap efficient platforms for parallel computation, it comes as natural to leverage
on their power to accelerate the resolution process for these complex problems. There is an ex-
tensive literature on parallelization of metaheuristic techniques [AT02, Alb05, CMRR02] since it
constitutes an interesting approach, not only for reducing computation times, but also for obtain-
ing higher accuracy of the solution process (i.e., solutions of higher quality). This improvement is
due to a new search model that enables a finer tuning between intensity and diversity.

When handling populations, parallelism comes out in a natural way, as different individuals
may be operated independently. Hence, the performance of population based algorithms tends
to improve as they are executed in parallel. From a high level viewpoint, parallel strategies for
this kind of methods can be classified into two categories: (1) parallel computation, where the
individual operations are performed in parallel, and (2) parallel population, where the algorithm’s
population is structured into smaller subpopulations.

One of the most frequently used models that follows the first strategy is the so called master-
slave model (also known as global parallelization). Within this model, the central “master” process
performs the population-scale operations (such as the selection method of an EA), while the slaves
perform the independent individual-scale operations (such as the individual fitness value computa-
tion, mutation, and sometimes the recombination as well). This kind of strategy is mostly used in
scenarios where the fitness value computation is a costly process (in computation time). Another
popular strategy consists in accelerating the computation time by performing multiple independent
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executions at a time (with no interaction among them) in many computers; upon completion of
all the executions, the best solution found among all is kept. Again, this process does not change
the global behavior of the algorithm, but reduces the computation wall clock time.

Besides the master-slave model, most parallel population-based algorithms found in the litera-
ture use some kind of structure for their population of individuals. This kind of model is specially
used with EAs. Among the most popular models for structured populations are the distributed
model or coarse grained, and the cellular model or fine grained [AT02].

Figure 2.3: Structured population models: (left) cellular and (right) distributed

In the case of distributed algorithms [Alb05] (Figure 2.3 (right)), the population is divided
into a set of smaller subpopulations or islands, each of which is then handled in parallel by a
sequential metaheuristic. Islands cooperate by exchanging information (typically individuals);
this cooperation is used to introduce new diversity into the subpopulations, keeping them from
stagnating around local optima. The parameters required for the complete definition of this model
include: the topology, which determines the directions of the logical communication channels
among islands; the migration schedule, which determines at which moments of the execution
the information exchanges will take place (since the communications are typically periodic, this
parameter is normally reduced to the value of the migration period); the migration ratio, which
determines the amount of information (i.e., number of individuals) exchanged; the selection and
replacement criteria, which determine, in the case of migrating individuals, which individuals enter
and leave each island. Finally, the communication among islands can be made to be synchronous,
or asynchronous.

Alternatively, cellular metaheuristics [AD08] (Figure 2.3 (left)) are based on the concept of
neighbourhood1. Each individual has a set of close individuals or neighbours according to some
virtual superimposed regular structure (like in a crystal or a beehive) with which the exploitation
of solutions will be performed. Exploration and diffusion of solutions to the rest of the population
happens in a smooth fashion, due to the continuous overlap existing among the different neighbor-
hoods, which lets high quality solutions to propagate over the population. This in turn could be
done purely in sequential or in parallel (either in multiple CPUs or inside a GPU).

Besides these basic models, there are many existing hybrid models in the literature that combine
two-tiered strategies. For instance, a commonly found strategy is one in which coarse grain is used
in the higher tier, and a cellular model is used within each subpopulation.

1Once again, the concept of neighbourhood for a cellular metaheuristic is different from the ones previously
mentioned for different contexts, such as trajectory based methods.
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Figure 2.4: Example of sorting (ranking) of solutions in a bi-objective MOP (left). Qualifying
non-dominated solutions according to the density of solutions in a bi-objective MOP (right)

• Multi-objective Metaheuristics

Up to now, we have dealt with mono-objective problems, since we want the algorithm to compute
one single global optimum (even if the algorithm is using for this other fit solutions also). But
in practice, lots of problems need to address the resolution of a task where two or more objective
functions are to be optimized, being they all equally important for the task. The use of Pareto
optimality based techniques means dealing with a set of non-dominated solutions, which requires
some specific mechanisms to handle them. Additionally, this set must be diverse enough to cover
the whole front. Although depending on the algorithm, there are many different issues to cope
with, the following ones are commonly found in many of the existing techniques: fitness function,
diversity management, and constraint handling mechanisms.

In the life-cycle of any metaheuristic technique there always exists a phase in which all the
solutions must be sorted to pick one (or more) of them. Examples of these phases are the selection
and replacement mechanisms in EAs, or the reference set updating procedure in scatter search
algorithms. In single-objective optimization, the fitness is a single (scalar) value, and thus, the
sorting is done according to it. However, in the multi-objective domain, the fitness consists of
a vector of values (one value per objective function), and as a consequence, the sorting is not
straightforward.

The dominance relationship is the key issue in Pareto optimality based techniques, since it allows
us to sort all the solutions. Actually, this relation defines a partial order relationship. Different
methods have been proposed in the literature [CCLV07, Deb01], which basically transform the
fitness vector into a single value. Actually, this kind of strategy was first proposed by Goldberg
in [Gol89] for guiding a GA population towards the Pareto front of a given Multi-Objective problem
(MOP). The basic idea behind it consists in successively finding solutions that are non dominated
by other solutions (the best ones according to the dominance relationship). Those solutions are
referred to as non-dominated. The highest possible value is assigned to those solutions. Then,
the next fitness value is assigned to the non-dominated solutions remaining after the previous ones
are removed from the population. The procedure continues until there is no solution left in the
population. Figure 2.4 (left) depicts an example of the behavior of this sorting mechanism (where
f1 and f2 are the objective functions which should be minimized). This strategy is known as
ranking.
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Even though the Pareto dominance based fitness function guides the search towards the Pareto
front, this approximation is not enough when a MOP is tackled, and also diversity in the front is
useful to the decision maker. Although different approximations exist in the literature [CCLV07],
many of the state-of-the-art ones are based on complementing the dominance based fitness function
with a density estimator, which measures the crowd around a solution inside the objective space.
Thus, given two solutions with the same fitness function value (ranking and strength), the density
estimator discriminates between them attending to their diversity. Let us consider the set of
solutions in Figure 2.4 (right). In this figure, solution 1 can be considered as the best one regarding
the density of solutions since it resides in the less crowded area of the front. On the other hand,
solution 3 is the worst one, since it is surrounded by many other close solutions. There exist some
well-known density estimators in the literature [CCLV07]: niching, adaptive grid, crowding, and
the k-nearest neighbour distance.

Concerning constraints handling mechanism, the scheme used by most of the state-of-the-art
metaheuristics for multi-objective optimization consists in considering that feasible solutions (those
which do not violate any constraint) are better than non-feasible ones, regardless of their objective
values [Deb00, Deb01]. Thus, given two solutions there are three possible cases:

1. If both solutions are feasible, the fitness function explained before should be used to distin-
guish between them; in case of being non-dominated, a density estimator must be applied.

2. If only one of them is a feasible solution, it should be considered as the best one.

3. If both solutions are infeasible, the one which less violates the constraints is considered to be
the best.

The influence of solving multi-objective problems in the expected interest on a technique is
so important in research today that we include this topic in the thesis to avoid making a smaller
contribution just considering mono-objective problems. This needs a considerable effort in design
and analysis of algorithms, as well as in entering this field full of especial topics, but definitely a
must in a modern thesis with a vocation of impact in the present hard panorama of research.

2.1.3 Statistical Validation Procedure

As previously explained, metaheuristics are stochastic based algorithms with different random
components in their operations. Opposite to deterministic procedures, for which, just a single
execution is required, when working with metaheuristics, performing a series of independent runs
for each algorithm’s configuration is a mandatory task in order to obtain a distribution of results.
In this case, it is possible to compute a global indicator (median, mean, standard deviation, etc.)
from the resulted distribution to measure the performance of the studied algorithm. Nevertheless,
using one single global indicator to directly compare metaheuristics should lead empirical analyses
to biased conclusions. Therefore, the correct practice is to compare the distributions of results by
means of statistical tests, which are indispensable tools to validate and to provide confidence to
our empirical analysis.

The standard procedure, recommended by the scientific community [She07, GMLH09], for the
statistical comparison of metaheuristics lies in the use of parametric or non-parametric tests. Para-
metric tests show a high precision to detect differences in comparisons, although they are restricted
to distributions fulfilling three specific conditions: independency, distributions are obtained from
independent executions; normality, they follow a Gaussian distribution; and heteroskedasticity,
indicating the existence of a violation of the hypothesis of equality of variances. Non-parametric
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Figure 2.5: Statistical validation procedure for experimental results

tests also show a successful performance, although they are less restrictive, since they can be ap-
plied regardless of the three previous conditions. Among all these tests, we can find procedures to
perform rankings, pair-wise comparisons, and multiple post hoc comparisons.

In this thesis, we have adopted a formal statistical procedure, as recommended in [She07,
GMLH09], to validate our results and to compare our proposals with other techniques in the current
state of the art. Our null hypothesis (equality of distributions) has been set with a confidence level
of 95%, meaning that statistical differences can be found in distributions when resulted tests are
with a p-value< 0.05.

Figure 2.5 illustrates this statistical procedure. The first step consists on choosing the kind
of tests to use: parametric or non-parametric. For this, as empirical executions are always in-
dependently done in our experiments, we directly perform a Kolmogorov-Smirnov test to check
the samples are distributed according to a normal distribution (Gaussian) or not. After this, the
homoskedasticity (i.e., equality of variances) is then checked using the Levene test. If all distribu-
tions are normal and the Levene returns a positive value, then we use the parametric procedure.
Otherwise, we use the non-parametric one. In the case of parametric procedure, a Paired t-test or
an ANOVA test are performed depending on the number of distributions that we are comparing:
2 or more than 2, respectively. For non-parametric, Friedman’s or Iman Davenport’s tests are first
performed in order to check whether statistical differences exist or not. If yes, a Wilcoxon’s or
Holm’s tests are performed depending on the number of distributions to compare: 2 or more than
2, respectively. Otherwise, the procedure finishes without rejecting the null hypothesis.



Chapter 3

Fundamentals of Particle Swarm
Optimization (PSO)

3.1 PSO: Introduction

Particle swarm arose from a series of experimental simulations performed by Reynolds in 1987 [Rey87]
and continued by Heppner and Grenander in 1990 [HG90] in which, the dynamics of social agent
systems inspired on bird flocks were studied. In these simulations, a point on the screen was defined
as food, called the “cornfield vector”; the idea was for birds to find food through social learning, by
observing the behavior of nearby birds, who seemed near the food source. Kennedy and Eberhart
(1995) [KE95] experimented with the optimization potential of particles’ dynamics and modified
the algorithm to incorporate topological neighborhoods and multidimensional search. In this way,
each particle belongs to a social neighborhood, and its social influence will result from the obser-
vation of its neighbors. It means that a particle will be affected by the best point found by any
member of its topological neighborhood. The definition of a neighborhood topology is simply the
characterization of a social network, represented as a graph, where each individual is represented
as a vertex and an edge exists between two individuals if they can influence one another.

The main difference between the PSO paradigm and other instances of population based al-
gorithms, such as EAs, is memory and social interaction among the individuals. In the other
paradigms, the important information an individual possesses, usually called genotype, is its cur-
rent position. In PSO, the really important asset is the previous best experiment. This is the drive
toward better solutions: each individual stores the best position found so far. The mechanism res-
ponsible for sampling, the equivalent of recombination, is the imitative behavior of the individuals
in the particle’s social neighborhood. The fact that this behavior is stochastic in nature accounts
for the fact the algorithm can sample new solutions in areas not yet explored by the swarm.

There exist numerous descriptions of PSO in the literature [KE01, Men04, PKB07, Cle10], with
detailed formulations of its components and parameters. Our aim in this chapter is to introduce the
PSO from a new “morphological” perspective. First, we describe the canonical PSO and successive
standard versions (2006, 2007, and 2011) proposed by research community in this field [PCG11].
After this, we emphasize the most interesting innovations provided by representative versions of
this algorithm. We also describe other related metaheuristics that have been partially used in this
thesis. Finally, we perform a general review of the impact of PSO publications in the literature
concerning benchmarking studies and applications.

25
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Figure 3.1: Particle swarm optimization vector dynamics. A new position of particle xt+1
i is

reached after velocity calculation

3.1.1 Canonical PSO

Canonical particle swarm optimization [KE01] works by iteratively generating new particles’ po-
sitions located in a given problem search space. The position xi represents a set of Cartesian
coordinates describing a point in solution search space. Each one of these new particles’ positions
are calculated using the particle’s current position, the particle’s previous velocity, and two main
informant terms: the particle’s best previous location, and the best previous location of any of its
neighbors.

Formally, in canonical PSO each particle’s position vector xi is updated each time step t
by means of the Equation 3.1. From a graphic point of view, Figure 3.1 shows a representative
illustration of a particle’s position updating operation in a typical optimization problem landscape.

xt+1
i ← xt

i + vt+1
i (3.1)

where vt+1
i is the velocity vector of the particle given by

vt+1
i ← ω · vt

i + U t[0, ϕ1] · (p
t
i − xt

i) + U t[0, ϕ2] · (b
t
i − xt

i) (3.2)

In this formula, pt
i is the personal best position the particle i has ever stored, bt

i is the position
found by the member of its neighborhood that has had the best performance so far. Acceleration
coefficients ϕ1 and ϕ2 control the relative effect of the personal and social best particles, and
U t is a diagonal matrix with elements distributed in the interval [0, ϕi], uniformly at random.
Finally, ω ∈ (0, 1) is called the inertia weight and influences the tradeoff between exploitation and
exploration. High values of inertia promotes the exploration, although inducing fast oscillation
around basin of attraction. A low inertia weight exploits a certain promising region and keep the
particle from oscillating too fast without accurately exploring it. In addition, inertia avoids the
use of a velocity constriction threshold V max [KE01] that, in spite of preventing the explosion
when velocity increases too much, it incorporates arbitrariness and problem dependence.

An equivalent version of the velocity equation was reported in [CK02], where Clerc’s constriction
coefficient χ is used instead of inertia weight as shown in Equation 3.3. This coefficient resulted
after analyzing the trajectories of particles in the system that simply explodes after a few iterations,
when the algorithm is run without restraining the velocity in some way.
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vt+1
i ← χ ·

(
vt
i + U t[0, ϕ1] · (p

t
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i) + U t[0, ϕ2] · (b
t
i − xt

i)
)

(3.3)

χ←
2

|2− ϕ−
√
ϕ2 − 4ϕ|

, with ϕ←
∑

i

ϕi, and ϕ > 4 (3.4)

Constriction coefficient χ is calculated, by means of Equation 3.4, from the two acceleration
coefficients ϕ1 and ϕ2, being the sum of these two coefficients what determines the χ to use.
Usually, ϕ1 = ϕ2 = 2.05, giving as results ϕ = 4.1, and χ = 0.7298 [ES00, Tre03]. With these
values the constriction method proposed by Clerc [CK02] results in convergence over time, and the
amplitude of particles’ oscillations decreases along with the optimization process.

The advantage of using constriction is that there is no need to use V max nor to guess the
values for any parameters governing convergence and preventing explosion. Subsequent experi-
ments [ES00] concluded that it seems a good option to set V max to Xmax, the dynamic range
of each variable in each dimension. The result is a PSO with no problem-specific parameters,
considered the canonical particle swarm algorithm.

Algorithm 1 Pseudocode of Canonical PSO

1: S ←initializeSwarm(Ss)
2: computeLeader(b)
3: while t < MAXIMUMt do
4: for each particle i in S do
5: vt+1

i ←updateVelocity(ω,vt
i,x

t
i, ϕ1,p

t
i, ϕ2,b

t) //Equations 3.2 or 3.3
6: xt+1

i ←updatePosition(xt
i,v

t+1
i ) //Equation 3.1

7: evaluate(xt+1
i )

8: pt+1
i ←update(pt

i)
9: end for

10: bt
i ←updateLeader(bt

i)
11: end while

As shown in Algorithm 1, the canonical PSO starts by initializing the swarm (Line 1), which
includes both the positions and velocities of the particles. The corresponding pi of each particle
is randomly initialized, and the leader b is computed as the best particle of the swarm (Line 2).
Then, for a maximum number of iterations, each particle flies through the search space updating
its velocity and position (Lines 5 and 6), it is then evaluated (Line 7), and its personal best position
pi is also updated (Line 8). At the end of each iteration, the leader b is also updated.

3.1.2 Standard Versions of PSO

In related literature, there exist a number of works in which proposed approaches are compared
against PSO versions so called “the standard one”, although they are never the same and they never
use homogeneous parameters. This motivated a group of researches in this field, supervised by
James Kennedy and Maurice Clerc, to provide the academic community with a validated Standard
PSO to be used in analysis and comparisons. This PSO version does not intend to be the best
one, but simply a suggested approach very near to the original version (1995), with a series of
improvements based on recent works. Therefore, in 2006 appeared the first standard of PSO which
brought a few changes with regards to the canonical one, mostly on parameter setting. However,
with the following standards, 2007 and 2011, several significant improvements were introduced
concerning rotation invariance.
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• Standard PSO 2006

The first standard PSO [PCG11] performs in a similar way to canonical one, although using an
specific parameter setting as shown in Table 3.1. When a particle exceeds the limits of problem
bounds, the position is set to the upper/lower value and the velocity is reset to zero. The neigh-
borhood topology is random, meaning that the number of particles that informs a given one may
be any value between 1 (for each particle informs itself) and Ss, the swarm size.

Table 3.1: Parameter settings in Standard PSO 2006
Parameter Value Description

Ss = 10 + 2 ·
√
D Swarm size, where D is the dimension of the search space

K = 3 Maximum number of particles informed by a given one
T = (1 · · ·Ss) Topology, randomly (uniform) modified after each step if there has been no improvement
ω = 1

2·ln(2)
Inertia, first cognitive/confidence coefficient

ϕ1 = ϕ2 = 0.5 + ln(2) Acceleration coefficients, second cognitive/confidence coefficients

Concerning the initialization of particles, initial positions are chosen at random inside the
search space (which is supposed to be a hyperparallelepid, and even often a hypercube), according
to a uniform distribution. Initial velocity vectors are calculated as the difference of two random
positions. The resulting distribution is not even uniform, as for any method that uses a uniform
distribution independently for each component. In this sense, authors argued that, in spite of this
not being the best initialization method, it is close to the one of the original PSO.

• Standard PSO 2007

Standard PSO 2007 [PCG11] introduces a series of optional differences with regards to Standard
2006, although the improvement of these changes is not always clear and in fact their effect may
only be marginal. The main differences can be enumerated as follows:

1. When a particle i has no better informant than itself, it implies that pi = bi and Equation 3.2
(or 3.3) reduces to vt+1

i = ω · vt
i + U t[0, ϕ1] · (pt

i − xt
i).

2. Optional “non sensitivity to rotation of the landscape”. When this option is activated, vectors
(pt

i − xt
i) and (bt

i − xt
i) are replaced by rotated vectors. In this way, the final distribution of

the next possible positions is not dependent on the system of coordinates.

3. Optional “random permutation” of particles before each iteration. As authors noticed, this
operation is time consuming, but with no clear improvement.

4. Optional “clamping position”. It refers to the decision to take when a particle is located
out of the problem bounds. Clamping a particle sets its position to the problem bounds and
the velocity to zero. No clamping (and no evaluation) may induce an infinite run if the stop
condition is the maximum number of evaluations.

5. Probability Pr of a given particle being an informant of another one. In Standard PSO
2006, it was implicit by building the random neighborhood topology. In Standard 2007, the
default value is directly computed as a function of (Ss,K), formally Pr = 1 − (1 − 1

Ss )
K .

The topology is exactly the same as in Standard 2006, although in this standard it can be
set at will by the researcher.
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6. The search space can be quantised to transforms continuous variables to discrete ones. It
consists of aMid-Thread uniform quantiser method Q(x) = ∆·⌊x/∆+0.5⌋, with the quantum
step set here to ∆ = 1.

The remaining parameters are set as specified in Table 3.1, and initialization of particles posi-
tions and velocities are performed as in the previous standard.

• Standard PSO 2011

In spite of the “non rotation invariance” affecting the PSO was already approached in Standard
2007 by rotating cognitive vectors, the performance of this previous version is still not satisfying.
The authors argued the following reason: each iteration step, the set of all new possible positions
is coordinate dependent. These new possible positions are a combination of two hypercubes whose
sides are parallel to the axes, with uniform probability distribution inside each rectangle. The
resulting combination is also a hypercube, but with a non uniform distribution (more dense near
de center).

To solve this issue, an intuitive approach is to define a domain where new generated positions are
not coordinate dependent. There are several possible shapes to define such a domain: hypershpere,
hypercylinder, hypercone, etc. From these, preliminary experiments suggested that a hypersphere
HS(Gr, ‖ Gr − vt

i ‖) is a good compromise, where Gr is the center of gravity with regards to
cognitive factors p and g. Therefore, the core of this Standard PSO 2011 [PCG11] consists on the
velocity vector (vig+1) calculation which is given by Equation 3.5.

vt+1
i ← ω · vti +Grti − xt

i +HS(Gr, ‖ Gr − vt
i ‖) (3.5)

with

Grti ←

{
xt
i+p′t

i

2 if p′ti = l′ti
xt
i+p′t

i +l′ti
3 otherwise

(3.6)

p′ti ← xt
i + c · (pti − xt

i) (3.7)

l′ti ← xt
i + c · (lti − xt

i) (3.8)

In these formulas, pti is the best solution that the particle i has seen so far, lti is the best particle
of a neighborhood of k other particles (also known as the social best) randomly (uniform) selected
from the swarm. The acceleration coefficient c > 1 is a normal (Gaussian) random value with
µ = 1/2 and ρ = 1/12. This coefficient is sampled anew for each component of the velocity vector.
Finally, HS is the distinctive element of the Standard PSO 2011 with regards to the previous ones.
It is basically a random number generator within a Hypersphere space, with Gr as center of gravity.
That is, Gr is calculated as the equidistant point to p′t, l′t, and xt.

In addition to rotation invariance mechanism, several differences can be observed in Standard
PSO 2011 with regards to the previous standard in 2007.

1. Normalization of the search space if it is possible, then being [0, normalization]D. There
exist problems for which the range of values is not the same for all variables. In such a case,
using sphere domains may lead to bad performance.
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2. Optional distribution of random factors: Gaussian distribution instead of uniform one. It
has been experimented performing normal random generators better than uniform ones.

3. For each run, the swarm size is now randomly chosen around a number of 40 particles. The
previous swarm size is given by a formula which is dimension dependant, often used to come
out as far form the optimal.

4. The velocity initialization has been slightly modified in order to avoid particles to leave the
search space at the very first steps.

The remaining parameters are set as specified in Table 3.1, and initialization of particles posi-
tions is performed as in the previous standards.

3.1.3 Prominent Versions of PSO

At the same time that canonical and standard PSO were defined, mostly in the last decade, a great
number of different versions of this algorithm have appeared that incorporate new formulations
and additional mechanisms with the twofold motivation of: enhancing its behavior (competitive-
ness), and adapting it to particular problem conditions (versatility). In this sense, exhaustive
taxonomies [PKB07, SM09] in the literature have reported around a hundred of PSO versions,
although they can be classified by similarity of attributes in few general categories. Almost every
single PSO in the literature can be categorized by, at least, one of the following features: different
solution encoding, hybridization, novel velocity formulation, topology neighborhood, and swarm
structure. Moreover, some of these categories are related to each other, so that, a given topology
can influence the velocity calculation, and the swarm structure can determine the complementary
technique for hybridization. In spite of PSO versions being too numerous for us to describe every
one of them, we have considered to characterize here a representative set of variants with quite
different features and covering, as much as possible, the whole set of categories.

• Binary PSO

Kennedy and Eberhart proposed in [PCG11] an intuitive alteration of the canonical algorithm
for binary solution encoding. In this version, the velocity is used as a probability threshold to
determine whether xi(k), the kth component of xi, should be evaluated as a zero or a one. For
this, they used a “sigmoid” function s(vi(k)) as in Equation 3.9.

s(vi(k))←
1

1 + e−vi(k)
(3.9)

Then, once generated a random number r = U(0, 1) for each particle variable and compared
it to s(vi(k)), if r is less than the threshold, then xi(k) is interpreted as 1, otherwise as 0. In
this variation, each velocity component is limited to vi(k) < Vmax, where V max is some value
typically close to 6.0. This setting prevents the probability of the particle element assuming either
a value of 0 or 1 from being too high. Though this discrete PSO has been shown to be capable
of optimizing several combinatorial problem [KS98], it is limited to only discrete problems with
binary-valued solution elements.

Several other binary versions of PSO can be found in the literature [Cle05, PFE05]. Never-
theless, all these versions consist of ad hoc adaptations from the original PSO, since notions of
velocity or direction vectors have no natural extensions for bit-strings, so that their performance
are still improvable.
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• Discrete PSO

Concerning a PSO for arbitrary discrete alphabets, there exists no original proposal as in the
binary case, but there is a series of discrete approaches for integer encoding and permutations.

An early but effective discrete particle swarm was proposed by Yoshida et al. [YKF+00], by
means of which, the velocity update equation can be adapted for use with integer variables by
discretizing the values before using them in the velocity update rule. In this approach, discrete
variables can freely mixed with continuous ones, as long as the appropriate update equations
require a different encoding.

More recently, Consoli et al. [CMPDDM10] proposed a new Discrete PSO without considering
any velocity since, from the lack of continuity of the movement in a discrete space, the notion of
velocity has a fuzzy meaning; however they kept the attraction of the best positions. They interpret
the weights of the updating equation, as probabilities that, at each iteration, each particle has a
random behavior, or acts in a way guided by the effect of an attraction. The moves in a discrete
or combinatorial space are jumps from one solution to another. The attraction causes the given
particle to move towards this attractor if it results in an improved solution.

A last attempt corresponds to Set-Based PSO [CZZ+10] for discrete optimization. This version
uses a set-based representation scheme that enables it to characterize the discrete search space by
defining the candidate solution as a crisp set and the velocity update rule as a set with probabilities.
All arithmetic operators are then adapted to generate solutions in crisp sets domains. In this way,
the authors propose a base method to PSO discretization that used in the case of Comprehensive
Learning PSO (next described), as well as other basic versions.

• Geometric PSO

Geometric Particle SwarmOptimization (GPSO) [MCP07] enables us to generalize PSO to virtually
any solution representation in a natural and straightforward way, extending the search to other
search spaces, such as combinatorial ones. The key issue in GPSO consists in using a multi-
parental recombination of particles (solutions) which leads to the generalization of a mask-based
crossover operation, proving that it respects four requirements for being a convex combination in
a certain space. A convex combination is an affine combination of vectors where all coefficients
are non-negative. When vectors represent points in the space, the set of all convex combinations
constitutes the convex hull. This way, the mask-based crossover operation substitutes the classical
movement in PSO and position update operations, initially proposed for continuous spaces. This
property has been demonstrated for the cases of Euclidean, Manhattan and Hamming [MCP07].

For the particular case of Hamming spaces, a three-parent mask-based crossover (3PMBCX) is
defined as follows:

Definition 3.1.1. Given three parents a, b and c in {0, 1}n, generate randomly a crossover mask
of length n with symbols from the alphabet {a, b, c}. Build the offspring o by filling each position
with the bit from the parent appearing in the crossover mask at the position.�

In a convex combination, weights wa, wb and wc indicate (for each position in the crossover
mask) the probability of having the symbols a, b or c, respectively. The pseudocode of the GPSO
algorithm for Hamming spaces is illustrated in Algorithm 2. For a given particle i, three parents
take part in the 3PMBCX operator (line 9): the current position xi, the social best position bi

and the personal best position found pi (of this particle).
The weight values ωa, ωb and ωc indicate (for each element in the crossovermask) the probability

of having values from the parents xi, bi or pi, respectively. These values associated to each parent
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Algorithm 2 Pseudocode of GPSO for Hamming Spaces

1: S ← initializeSwarm(Ss)
2: computeLeader(b)
3: while g < MAXIMUMt do
4: for each particle i in S do
5: xt+1

i ← 3PMBCX(xt
i , ωa,b

t
i, ωb,p

t
i, ωc)

6: xt+1
i ←mutate(xt+1

i , pµ)
7: evaluate(xt+1

i )
8: pt+1

i ← update(bt
i)

9: end for
10: bt+1

i ← updateLeader(bt
i)

11: end while

represent the present influence of the current position (ωa), the social influence of the global best
position (ωb), and the individual influence of the historical best position found (wc). A restriction
of the geometric crossover forces ωa, ωb and ωc to be non-negative and add up to one.

In summary, the GPSO operates as follows: in the first phase, uniform random initialization
of particles is carried out by means of the SwarmInitialization() function (Line 1). In a second
phase, after the evaluation of particles (line 4), personal and social positions are updated (lines 5
and 6, respectively). Finally, particles are “moved” by means of the 3PMBCX operator (line 9).
In addition, with a certain probability, a simple bit-flip mutation operator (line 10) is applied in
order to introduce diversity in the swarm to avoid early convergence with a probability of pµ. As
evaluated in [AGNJT07], the three-parent mask-based crossover used in GPSO makes the offspring
inherit the shared selected features present in the three parents involved in the mating.

• Bare Bones

Bare bones PSO was proposed by Kennedy in 2003 [Ken03] with the main feature that position
and velocity update rules are substituted by a procedure that samples a parametric probability
density function. In this first proposal, the particle’s position are calculated by means of Gaussian
distribution as in Equation 3.10. The idea was inspired by a plot distribution of positions attained
by single canonical PSO moving in one dimension under the influence of fixed pi and bi. The
empirical distribution resembled a bell curve centered at µi.

xi
t+1 ← N(µi

t, σ
i
t), with µi

t ←
pi
t + bi

t

2
and σi

t ←| p
i
t − bi

t | (3.10)

An improved version of bare bones was later proposed [RB06], in which the Gaussian distri-
bution is replaced with a Lévy distribution. The Lévy distribution is bell-shape like the Gaussian
one and is also stable distribution. It provides a tunable parameter α, which interpolates between
the Cauchy (α = 1) and Gaussian (α = 2) distributions. This parameter can be used to control
the width of the density curve. After an empirical analysis in [RB06], it was shown that for a value
of α = 1.4, the “Lévy Particle Swarm” reproduces the behavior of canonical PSO.

• Fully Informed Particle Swarm

As previously explained, if Clerc’s constriction coefficient χ is used instead of inertia weight to
formulate the velocity update, this coefficient is calculated by means of Equation 3.4, from the
two acceleration coefficients ϕ1 and ϕ2, being the sum of these two coefficients what determines
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the χ to use. Usually, ϕ1 = ϕ2 = 2.05, giving as results ϕ = 4.1, and χ = 0.7298 [ES00, Tre03]
which provides stability and proper convergence behavior to this algorithm. As stated by Mendes
in [MKN04, MMWP05], this fact implies that the particle’s velocity can be adjusted by any number
of informant terms, as long as acceleration coefficients sum to an appropriate value, since important
information given by other neighbors about the search space may be neglected through overempha-
sis on the single best neighbor. With this assumption, Mendes et all.(2004) [MKN04] proposed the
Fully Informed PSO (FIPS), in which a particle uses information from all its topological neighbors.

In FIPS, the value ϕ, that is, the sum of the acceleration coefficients, is equally distributed
among all the neighbors of a particle. Therefore, for a given particle i with position xi, ϕ is broken
up in several smaller coefficients ϕj = ϕ/|Ni|, ∀j ∈ Ni. Then, the velocity is updated as follows:

vt+1
i ← χ


vt

i +
∑

j∈Ni

U t [0, ϕj ] · (p
t
j − xt

i)


 , (3.11)

where Ni is the set of neighbors of the particle i, and following the neighborhood a given
topology. Figure 3.2 illustrates the topologies used by Mendes et al. [MKN04] as the ones with
most successful performances in a previous work [KM02]. These topologies are: All, Ring, Square,
Four-Clusters, and Pyramid. Their results show that the Square topology (with 4 informants)
outperforms the other ones. Indeed, the fact of defining these neighborhoods in the swarm makes
the particles to be influenced only by a certain number of neighbors, and connected with static
links in the graph.

Figure 3.2: Topologies used by Mendes et al. [MKN04]. Each particle has a number of fixed
neighbors in the swarm (All=N-1; Ring=2; Four-Clusters=4,5; Pyramid=3,5,6; Square=4)

• Comprehensive Learning PSO

With the aim of successfully tackling complex multimodal functions, Liang et al.(2006) [LQSB06]
designed the Comprehensive Learning PSO (CLPSO), an interesting learning strategy adapted to
PSO whereby all other particles’ personal best information is used to update a particle’s velocity.
This strategy differs from FIPS in such a way that in CPSO different component dimensions (d)
are informed by different personal best positions of neighbors, whereas in FIPS, each particle
dimension is informed by all personal best position of involved particles in the neighborhood. In
this way, the velocity updating equation used by CLPSO is as follows:

vt+1
i (d)← ω · vti(d) + U t[0, ϕ] · (ptfi(d)(d)− xt

i(d)) (3.12)

where fi = [fi(1), fi(2), · · · , fi(D)] defines which particles’ personal best p the particle i should
follow. Then, ptfi(d)(d) is the corresponding dimension of any particle’s p including it own personal
best, and the decision depends on probability Pc, referred to as the learning probability, which can
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take different values for different particles. For each dimension d of particle i, a random number is
generated. If this random number is higher than Pci, the corresponding dimension will learn from
its own pi; otherwise it will learn from another particle’s personal best p. When this last happens,
a tournament selection procedure is used to select the “neighbor” particle from which the current
particle i learns.

Therefore, new positions of particles are generated using the information derived from different
particle’s personal best positions. To ensure that a given particle learns from good neighbors and
to minimize the time wasted on poor directions, particles are allowed to learn from neighbors until
the particle do not reach any improvement for a certain number of iterations called the refreshing
gap m, then ji is reassigned for that particle. CLPSO has been proven to be a prominent solver
on complex multimodal and non-separable problem functions [LQSB06].

• Orthogonal Learning PSO

With the motivation of making an efficient use of search information from p to b, Zhan et
al.(2011) [ZZLS11] proposed the Orthogonal Learning PSO (OLPSO). This algorithm uses an
Orthogonal Experimental Design (OED) method that offers an ability to discover the best combi-
nation levels for different factors with a reasonably small number of experimental samples. Then,
OLPSO combines information of personal and social informants p and b, respectively, to form an
orthogonal guidance vector o. The particle’s velocity update rule is then as specified in Equa-
tion 3.13.

vt+1
i ← ω · vt

i + U t[0, ϕ] · (ot
i − xt

i) (3.13)

The guidance vector oi is constructed for each particle i from pi and bi as follows,

ot
i ← pt

i ⊕ bt
i (3.14)

where the symbol ⊕ stands for the OED operation. Therefore, with the resulting orthogonal
learning vector ot

i, particle i adjusts its velocity and position every generation. This vector ot
i is

then kept constant until any improvement has not been reached. In the calculation of ot
i, each of

the D dimensions is regarded as a factor and therefore, the are D factors in the OED. This results
in M = 2lg2(D+1) orthogonal combinations, since the level of each factor is two. In this way, M is
no longer than 2 ·D, which is significantly smaller than 2D, the total number of combinations.

The orthogonal learning strategy can be applied to any kind of topology structure, that is b
can be taken as the global best, as well as the best particle in a local neighborhood. When pi is
the same as bi, OED makes no contribution, and OLPSO will randomly select another particle r
to construct the new ot

i vector. OLPSO have been applied to numerous benchmarking functions,
as well as several real world problems showing a successful performance in practically all cases.

• Incremental Social Learning PSO

Incremental Social Learning (ISL) is a framework by means of which one agent is added to a given
population at a time according to a schedule to reinforce the global knowledge of the population.
Then, every time a new agent is added to the population, it should learn socially from a subset of
the more experienced agents. Using this mechanism Montes de Oca et al.(2011) [MdOSVdED11]
proposed the Incremental Social Learning PSO (IPSO). In this algorithm, every time a new particle
is added, it is initialized using information from particles that are already part of the population.
This mechanism is implemented as an initialization rule that moves the new particle xnew from
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an initial randomly generated position in the problem’s search space to one that is closer to the
position of a particle that serves as a “model” pmodel to imitate (usually the best particle in the
swarm). The initialization rule used in IPSO is the following:

x′new ← xnew + U · (pmodel − xnew) (3.15)

where U ∈ [0, 1) is a uniformly distributed random number, which is the same for all dimensions
in order to ensure that the new particle’s updated previous best position will lie somewhere along
the direct attraction vector pmodel−xnew . Using independent random numbers for each dimension
would reduce the strength of the bias induced by the initialization rule because the resulting
attraction vector would be rotated and scaled with respect to the direct attraction vector. Once
the rule is applied, the new particle’s previous best position is initialized to the point x′new and its
velocity is set to zero. Finally, the new particle’s neighborhood, that is, the set of particles from
which it will receive information in subsequent iterations, is generated at random, respecting the
connectivity degree of the swarm’s topology.

• Self Learning PSO

A recent version consist of the Self Learning PSO (SLPSO) proposed by Li et al.(2012) [LYN12],
which is inspired by the idea of division labor. In SLPSO, each particle informed four different
learning sources: the global best particle b, its personal best position p, the best position of a
randomly chosen particle pr, and a random position r nearby. The four strategies play roles of
convergence, exploitation, exploration, and jumping out of the basis of attraction of local optima,
respectively. The corresponding learning equations to these four different situations are as follows:

• Operator a: learning from its personal best position
exploitation:

vt+1
i ← ω · vt

i + U t[0, ϕ] · (pt
i − xt

i) (3.16)

• Operator b: learning from the personal best position of a random neighbor
exploitation:

vt+1
i ← ω · vt

i + U t[0, ϕ] · (prti − xt
i) (3.17)

• Operator c: learning from the global best position
exploitation:

vt+1
i ← ω · vt

i + U t[0, ϕ] · (bt
i − xt

i) (3.18)

• Operator d: learning from a random position nearby
jumping out:

xt+1
i ← ω · xt

i + vt
avg ·N(0, 1) (3.19)

In jumping step, vavg is the average speed of all particles for each dimension, which is calculated

by: vavg =
∑Ss

i=1 |vi|
Ss , where Ss is the swarm size. The choice of which learning option is the most

suitable would depend on the shape of the local fitness landscape where a particle is located, which
is achieved by means of an adaptive learning mechanism and updating a given selection ratio.
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3.1.4 Related Approaches: Differential Evolution (DE)

Differential Evolution (DE) is an efficient metaheuristic for real parameter optimization problems
that has been successfully used in a multitude of studies [PSL05] from its design by Storn and
Price in 1995 [SP95]. DE is often compared against PSO in the literature, so it constitutes one
of its direct competitors. Similarly to PSO, DE is easy to use and implement, and it also needs a
few parameters to be tuned. Nevertheless, the main feature lies in the population of real-valued
vectors that, as to in PSO, are combined by a series of differential equations to update them on
the search landscape.

Therefore, in DE, the task of generating new individuals (real-valued vectors) is performed
by operators such as the differential mutation (also known as “perturbation”) and crossover. A
mutant individual wi

g+1 can be generated by a perturbation scheme selected to initially construct
the algorithm. Storn and Price [SP95] proposed four original perturbation schemes:

• DE/rand/1 :
wt+1

i ← xt
r1 + F · (xt

r2 − xt
r3) (3.20)

• DE/best/1 :
wt+1

i ← bt + F · (xt
r1 − xt

r2) (3.21)

• DE/best/2 :
wt+1

i ← bt + F · (xt
r1 + xt

r2 − xt
r3 − xt

r4) (3.22)

• DE/rand-to-best/1 :
wt+1

i ← xt
i + λ · (bt − xt

i) + F · (xt
r1 − xt

r2) (3.23)

where r1, r2, r3, r4 ∈ {1, 2, . . . , i− 1, i+ 1, . . . , N} are random integers mutually different, and
also different from the index i. The mutation constant F > 0 stands for the amplification of the
difference between the individuals xr′s and it avoids the stagnation of the search process. The
last parameter, λ controls the greediness of the fourth scheme. To reduce the number of control
variables, these two last parameters are usually set to the same value F = λ.

In order to increase even more the diversity in the population, each mutated individual under-
goes a crossover operation with the target individual xt

i, by means of which a trial individual ut+1
i

is generated. A randomly chosen position is taken from the mutant individual to prevent that the
trial individual replicating the target individual.

ut+1
i (j)←

{
wt+1

i (j) if r(j) ≤ Cr or j = jr,

xt
i(j) otherwise.

(3.24)

As shown in Equation 3.24, the crossover operator randomly chooses a uniformly distributed
integer value jr and a random real number r ∈ [0, 1], also uniformly distributed for each component
j of the trial individual ut+1

i . Then, the crossover probability Cr, and r are compared just like j
and jr. If r is lower or equal than Cr (or j is equal to jr) then we select the jth element of the
mutant individual to be allocated in the jth element of the trial individual ut+1

i . Otherwise, the
jth element of the target individual xt

i becomes the jth element of the trial individual.
Finally, a selection operator decides on the acceptance of the trial individual for the next

generation if and only if it yields a reduction (assuming minimization) in the value of the fitness
function f(), as shown by the following Equation (3.25):

xt+1
i ←

{
ut+1
i if f(ut+1i) ≤ f(xt

i),

xt
i otherwise.

(3.25)
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Algorithm 3 shows the pseudocode of DE. After initializing the population, the individuals
evolve during a number of iterations (MAXIMUMt). Each individual is then mutated (Line 5)
and recombined (Line 6). The new individual is selected (or not) following the operation of
Equation 3.25 (Lines 7 and 8).

Algorithm 3 Pseudocode of Canonical DE

1: P ←initializePopulation(Ps)
2: while t < MAXIMUMt do
3: for each individual i of P do
4: choose mutually different rs values
5: wt+1

i ← mutation(xt
rs , F ) //Eq. 3.20 or Eq. 3.21 or Eq. 3.22 or Eq. 3.23

6: ut+1
i ← crossover(xt

i ,w
t+1
i , Cr) //Eq. 3.24

7: evaluate(ut+1
i )

8: xt+1
i ← selection(xt

i ,u
t+1
i ) //Eq. 3.25

9: end for
10: end while

Although there is no precise indication of which scheme is the best (it seems to depend to the
tackled problem), nor there is a definitive indication of which values to use for parameters, Storn
and Price [PSL05] proposed a series of empirically tested values: crossover probability Cr ∈ [0, 1]
must be considerably lower than 1, e. g., 0.3. Nevertheless, if no convergence can be achieved, a
value in [0, 0.8] should be used; for many applications, a population size of P = 10 · D is a good
choice, being D is the problem dimension; value F is usually chosen in [0.5, 1], in such a way that,
the higher the population size, the lower the weighting factor F .

3.2 A General Survey on PSO Applications

This section presents a pragmatic review of the impact of PSO publications in the literature.
Our aim here is to organize and extract underlying information concerning the challenges and
opportunities offered by this technique. Then, following the general structure of this thesis, on the
first place, we made an analysis of research studies on which standard benchmarks of continuous
optimization functions are used to assess PSO approaches. We focus on the main properties of most
relevant benchmarks and their adaptation to the specific features of the particle swarm algorithm.
On the second place, we made an extensive catalogue of applications tackled with PSO in the
literature. We count over more than ten thousands publications on this metaheuristic stored at
digital libraries and we summarize them according to different categories of application domains.

3.2.1 Benchmarking

In the last two decades, the performance of PSO has mainly been assessed on subsets of popu-
lar benchmark of continuous optimization problems such as the Sphere, Schaffer’s, Griewank’s,
Ackley’s, Rosenbrock’s, and Rastrigin’s functions showing promising results. These functions can
be characterized by the number of optima (modality), the degree of convexity, the existence of
plateaus, the ruggedness, and the dependence of variables. Nevertheless, other features like the
number of funnels, the rotation, and the shifting to different bias to the global optimum are not
considered in such sets of functions. In addition, a great number of comparisons made in past
research studies are often confusing and limited to the test problems used by them. Furthermore,
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these function problems are in general well adapted to the operation of PSO, and do not stress the
intrinsic deficiencies of this algorithm properly.

A series of benchmark test suites have appeared that provide well defined procedures to eval-
uate and compare algorithms on continuous optimization. Two first attempts can be found in
De Jongs’ functions [DJ75] (DEJONG’75) and Yao’s set [YLL99] (XYAO’99). These two test
suites have largely been used on evolutionary and stochastic local search techniques, although
they present two major concerns: the global optimum is generally located at the origin of co-
ordinates, and the distribution of local optima is usually regular with separable variables. All
these features make the sets of functions unsuitable to test PSO approaches. More recently, new
benchmarks are appearing that solve these and other issues commented before. They are becoming
popular from the Special Session of Continuous Optimization of CEC’2005 [SHL+05] (CEC’05),
from which, several proposals have been worked from different points of view: large scale capabili-
ties [TYS+07] [TLS+10] (CEC’08 and CEC’10), noisy-noiseless functions [HAFR09a] (BBOB’09),
scalability studies [HLM10b] (SOCO’10), and real-world problems [DS11](CEC’11). In addition,
subsets of CEC’05 functions have been directly used to constitute the test suites in other special
sessions like MAEB’09 [GNAAL09] (used in Chapter 4), where only multimodal functions were
experimented (MAEB’09 ⊂ CEC’05). These test suites contain functions with different prop-
erties: single and multi-funnel, shifted global optimum, rotation, dependency of variables, etc.;
which make them highly appropriate to find deficiencies in PSO, and to compare it against other
techniques in the state of the art.

In this sense, another important criterion when selecting a benchmark test suite consists on
its popularity in the current literature. In this way, we could know before-hand the number of
techniques tested with a given benchmark set and what are the best results to beat that constitute
the current state of the art. With this aim, we have carried out a revision of around 400 PSO
research studies. We limited our study to the following well-known conferences: GECCO, CEC,
PPSN, and SIS1; and journals: TEC, SMC, EC, SI, SOCO, and IS2; in the area. From these,
we filtered 202 contributions concerning versions of PSO tested with benchmark functions on
continuous optimization.

As a result, Figure 3.3 plots a bar graph representing the percentage of contributions in which
a PSO approach is, at least, evaluated with an academic benchmark. In this figure, we can also
see the proportion of these contributions with regards to the number of years each test suite has
been kept in use. Element OTHERS in bar graph includes all contributions concerning PSO using
“miscellaneous” sets of functions (from the introduction of PSO in 1995 to nowadays, 2012). At
the moment, CEC’11 test suite has not been used to evaluate any PSO version.

We can easily observe in Figure 3.3 that CEC’05 is the most used test suite for assessing PSO
approaches. In spite of coexisting with other modern benchmarks, the use of CEC’05 is increasing
along with the years. In addition, there exist several works devoted to characterize the fitness
landscape of CEC’05 functions by means of the fitness distance correlation [MS11], and the mean
dispersion [MBS09], so then we can classify the degree of difficulty they might present. In this
sense, CEC’05 satisfies almost all desirable features to evaluate PSO approaches. However, a
disadvantage can be found in this benchmark concerning the restriction of working with a relative
short dimensionality, as only a maximum of 50 variables can be used. Therefore, features derived
from the scalability can not be properly studied with CEC’05 (similar happens with BBOB’09).

1Genetic and Evolutionary Computation Conference (GECCO), Congress on Evolutionary Computation (CEC),
Parallel Problem Solving From Nature (PPSN), and Swarm Intelligence Symposium (SIS)

2IEEE Transactions on Evolutionary Computation (TEC), IEEE Transactions on System Man and Cybernetics
(SMC), Evolutionary Computation Journal (EC), Swarm Intelligence (SI), Soft Computing (SOCO), and Informa-
tion Sciences (IS)
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Figure 3.3: Percentage of contributions in which any PSO approach is evaluated with an academic
benchmark

Other benchmarks such as CEC’08, SOCO’10, CEC’10 and CEC’12, offer the chance of working
with large scale problem dimensions, since just up to one thousand variables can be tackled. They
are all extended versions of CEC’08 (CEC’08 ⊂ SOCO’10, CEC’08 ⊂ CEC’10 and CEC’10 =
CEC’12) and they have been widely used in the literature, also offering available results 3 to
be compared with. In this way, a recommendable practice in this field might be using CEC’05
plus another set of large scale functions (e. g., CEC’08 or SOCO’10), hence covering the complete
spectrum of hard properties to asses PSO approaches, as well as other metaheuristics for continuous
optimization.

Table 3.2 shows the set of functions mostly used in this thesis work (Chapters 5 and 7) with
their most interesting features: unimodal, multimodal, separable, non-separable, shifted to bi-
ased optimum, rotated, and hybrid composed. The respective bounds of search ranges and bi-
ases to optima are also indicated. The detailed descriptions of all these functions can be found
in [HLM10b], and [SHL+05]. The first part of this table correspond to 19 functions (labeled soco∗)
provided in SOCO’10. From this benchmark, functions soco1 to soco6 were originally used in
CEC’08 [TYS+07]. Functions soco7 to soco11 were added to the first ones in the special session of
ISDA’09 [HL09a], and functions soco12 to soco19 consist on hybridized functions that combine two
others (being one of them non-separable, at least). The second part of Table 3.2 includes 21 more
functions proposed in CEC’05 (labeled as cec∗) to the previous 19 of SOCO’10, then constituting a
set of 40 functions. We have to notice that, as done in [LMdOA+11], from the original 25 functions
of CEC’05 we omitted cec1, cec2, cec6, and cec9, since they are the same as soco1, soco3, soco4,
and soco8.

3[online] http://sci2s.ugr.es/EAMHCO/

http://sci2s.ugr.es/EAMHCO/
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Table 3.2: SOCO’10 and CEC’05 benchmark test suites with functions’ features: unimodal, mul-
timodal, separable and non-separable, rotated and non-rotated

f Name Uni./Mul. Sep. Rot. Search Range f∗

soco1 Shifted Sphere U Y N [-100, 100] -450
soco2 Shifted Schwefel 2.21 U S N [-100, 100] -450
soco3 Shifted Rosenbrock M N N [-100, 100] 390
soco4 Shifted Rastrigin M Y N [-5, 5] -330
soco5 Shifted Griewank M N N [-600, 600] -180
soco6 Shifted Ackley M Y N [-32, 32] -140
soco7 Shifted Schwefel 2.22 U Y N [-10, 10] 0
soco8 Shifted Schwefel 1.2 U N N [-65.536, 65.536] 0
soco9 Shifted Extended f10 U N N [-100, 100] 0
soco10 Shifted Bohachevsky U N N [-15, 15] 0
soco11 Shifted Schaffer U N N [-100, 100] 0
soco12 Hybr. Comp. soco9

⊕
0.25 soco1 M N N [-100, 100] 0

soco13 Hybr. Comp. soco9
⊕

0.25 soco3 M N N [-100, 100] 0
soco14 Hybr. Comp. soco9

⊕
0.25 soco4 M N N [-5, 5] 0

soco15 Hybr. Comp. soco10
⊕

0.25 soco7 M N N [-10, 10] 0
soco16 Hybr. Comp. soco9

⊕
0.50 soco1 M N N [-100, 100] 0

soco17 Hybr. Comp. soco9
⊕

0.75 soco3 M N N [-100, 100] 0
soco18 Hybr. Comp. soco9

⊕
0.55 soco4 M N N [-5, 5] 0

soco19 Hybr. Comp. soco10
⊕

0.75 soco7 M N N [-10, 10] 0

cec3 Shifted Rotated High Conditioned Elliptic U S R [-100, 100] -450
cec4 Shifted Schwefel’s Problem 1.2 with Noise U S N [-100, 100] -450
cec5 Schwefel’s Problem 2.6 U S N [-100, 100] -310
cec7 Shif. Rot. Griewank’s. G.O. Outside of Bounds M S R [0, 600] -180
cec8 Shif. Rot. Ackley’s with G.O. on Bounds M S R [-32, 32] -140
cec10 Shifted Rotated Rastrigin’s M S R [-5, 5] -330
cec11 Shifted Rotated Weierstrass M N R [-0.5, 0.5] 90
cec12 Schwefel’s Problem 2.13 M N N [-π, π] -460
cec13 Shifted Expanded Griewank’s plus Rosenbrock’s M N N [-3, 1] -130
cec14 Shifted Rotated Expanded Scaffer’s F6 M S R [-100, 100] -300
cec15 Hybrid Composition (f1-f2,f3-f4,f5-f6,f7-f8,f9-f10) M N N [-5, 5] 120
cec16 Rotated Version of Hybrid Composition f15 M N R [-5, 5] 120
cec17 F16 with Noise in Fitness M N R [-5, 5] 120
cec18 Rot. Hybr. Comp. (f1-f2,f3-f4,f5-f6,f7-f8,f9-f10) M N R [-5, 5] 10
cec19 Rot. Hybr. Comp. Narrow Basin Global Optimum M N R [-5, 5] 10
cec20 Rot. Hybr. Comp. G. O. on Bounds M N R [-5, 5] 10
cec21 Rot. Hybr. Comp. (f1-f2,f3-f4,f5-f6,f7-f8,f9-f10) M N R [-5, 5] 360
cec22 Rot. Hybr. Comp. High Condition Number Matrix M N R [-5, 5] 360
cec23 Non-Continuous Rotated Hybrid Composition M N R [-5, 5] 360
cec24 Rot. Hybr. Comp. (f1,f2,f3,f4,f5,f6,f7,f8,f9,f10) M N R [-5, 5] 260
cec25 Rot. Hybr. Comp. G. O. Outside of Bounds M N R [2, 5] 260

3.2.2 Real World Applications

Particle swarm optimization has been used across a wide range of real world applications. Areas
where PSO approaches have shown to be powerful solvers include multimodal problems, black-
box simulations, parameter tuning applications, and problems for which there are no specialized
methods available or all specialized methods show unsatisfactory results.

PSO applications are so numerous and diverse and just to review a subset of the most paradig-
matic ones involves a huge deal of work. An affordable way to review the state of the art consists
on listing the main application areas where PSOs have been successfully used. Therefore, based
on previous PSO overviews [PKB07, SM09] and after a thorough search on important digital li-
braries on the area: IEEExplore and ACM Digital Library, we have divided applications into 28
different categories, although many applications span more than one category. We have based our
categorization on an analysis of over PSO publications for the last six years, that is, we started
on 2006 to continue where those previous overviews finished [PKB07, SM09]. Because of the large
number of applications reviewed, here we will provide our categorization without citations.
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Table 3.3: PSO publications by year
Application domain 2006 2007 2008 2009 2010 2011 2012 Tdomain

Image and video analysis 1 3 3 40 10 13 2 72
Electricity networks and load dispatching 0 0 3 4 3 2 3 15
Control systems 33 27 54 64 65 72 68 383
Electronics and electromagnetics 9 6 8 10 33 87 45 198
Antenna design 47 49 46 72 88 70 88 460
Scheduling 40 49 91 121 109 81 84 575
Industrial design 35 33 69 88 67 58 37 387
Communication networks 204 248 377 795 1263 1204 1107 5198
Chemical processes 0 0 0 0 2 1 2 5
Biomedical 1 6 14 18 17 16 5 77
Clustering, classification and data mining 39 50 90 110 117 88 93 587
Fuzzy and neuro systems and control 3 2 2 1 4 3 3 18
Signal processing 161 194 269 358 663 875 793 3313
Neural networks 94 121 183 254 207 122 60 1041
Robotics 256 216 366 358 521 606 581 2904
Prediction and forecasting 3 3 13 22 35 16 14 106
Diagnosis, detection, and recovering of faults 14 4 12 40 44 11 14 139
Sensors and sensor networks 26 37 57 77 76 81 98 452
Computer graphics and visualization 0 2 1 4 2 1 0 10
Engines and electrical motors 2 0 1 3 1 0 1 8
Metalurgy materials 2 0 1 2 3 1 0 9
Music 1 0 0 2 5 4 1 13
Games 6 5 6 10 10 10 6 53
Security and military 1 1 0 1 0 0 0 3
Finance and economics 1 1 0 7 2 0 2 13
Transportation 42 54 69 119 159 365 291 1099
Traffic management 2 3 5 14 8 3 3 38
Vehicular networks 3 2 3 5 3 11 1 28
Tyear 1026 1116 1743 2599 3517 3801 3470 17204

The main PSO application categories are presented in Table 3.3, where the number of publica-
tions on different domains are organized by year, from 2006 to 2012. As a summary of this table,
in Figure 3.4 the global count of publications is graphically shown by domain category and year in
logarithmic scale. Application domains like: Communication Networks (with 5198 r.p.p. 4), Signal
Processing (3313 r.p.p.), Robotics (2904 r.p.p.), Neural Networks (1041 r.p.p.) and Transportation
(1099 r.p.p.) concentrate most of research efforts in the last years, whereas other domains like:
Chemical Processes (3 r.p.p.), Security and Military (3 r.p.p.), Engines and Electrical Motors (8
r.p.p.), Metallurgy and Materials (9 r.p.p.), and Computer Graphics and Visualization (10 r.p.p.)
have been shortly worked by industrial and research community in the context of particle swarm
optimization.

In general, the number of PSO applications is growing over the years (2012 is still in study).
Nevertheless, Table 3.3 shows how for certain domains, the use of PSO is becoming popular while
other research areas are reducing the use of this algorithm. In this sense, for some categories:
Transportation, Robotics, Signal Processing, Electronics and Electromagnetics, Sensor Networks,
Vehicular Networks, and Control Systems, the number of research publications increases, specially
from 2010 to 2012. However, we can also observe that traditional applications of PSO like: Neural
Networks, Clustering and Classification in Data Mining, Image Analysis and Scheduling are being
less worked from the last three years.

As a summary, we can state that this algorithm is the center of a big deal of developments and
applications, clearly worth of further analysis and plenty of opportunities for competitive research
in the upcoming years.

4Research paper publications
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Figure 3.4: Summary of PSO publications on real world applications by domain. A subgraph of these publications by year is also
plotted
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Chapter 4

DEPSO: Hybrid PSO with DE

4.1 Introduction

As we commented in Chapter 3, Particle Swarm Optimization and Differential Evolution have been
widely used on numerous and heterogeneous optimization problems, being these two algorithms
specially well adapted to real solution encoding. For this reason, several approaches have appeared
in the past [XJZ+12] that combine them, since it represents a promising way to create more
powerful optimizers. A first attempt was by Das et al. [DAK08], where an initial hybridization of
PSO and DE reached successful results in comparison with both, PSO and DE in their canonical
formulations, on a set of benchmark functions. Recently, a comprehensive overview of PSO-DE
hybridizations have been presented in [XJZ+12], where more than 45 proposals are studied, with
their applications to different research areas like: clustering and classification, economic dispatch,
image processing, constraints handling, robotics, and reactive power.

In this chapter, we are aimed at performing a through experimentation of our initial proposal
of PSO hybridized with DE, called DEPSO [GNAAL09, GNAA09a, GNAA09b], to discover its
intrinsic optimizing potentials in comparison with other advanced optimizers. Our DEPSO uses
the differential variation scheme employed in DE for adjusting the velocity of PSO’s particles. In
this way, by combining search strategies and differential operators present in PSO and DE, we
expected to improve the performance of the resulting technique. Our motivation is to try to create
a single hybrid that can be claimed to be the state of the art to guide future research in contrast
to the many past approaches validated very partially in the literature.

For this task, we have focused on three different procedures presented in two scientific confer-
ences in the area of metaheuristics. On the first place, we have followed the test suite proposed in
the Special Session of Continuous Optimization of MAEB’09 [HL09b], which is in turn based on
the function test set proposed in CEC’05 [SHL+05]. On the second place, we have also followed
the experimental framework proposed in the Special Session of Real Parameter Optimization of
GECCO’09 [HAFR09a], according to the Black-Box Optimization Benchmarking (BBOB) for noisy
and noiseless functions [HFRA09a, HFRA09b]. We have performed the two complete procedures
with different problem dimensions (D): from 2 to 40 variables. Our proposal is shown to obtain an
accurate level of coverage rate in comparison with other relevant techniques, even for the higher
dimensions, and despite the relatively small number of function evaluations used (1000 ·D).

The remaining of the chapter is organized as follows. In Section 4.2 our DEPSO is described.
Sections 4.3 and 4.4 present the experiments and results obtained with regards to MAEB’09 and
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BBOB’09 procedures, respectively. In Section 4.5, an analysis of CPU Timing consumption is
reported. Finally, conclusions and remarks are given in Section 4.6.

4.2 The Algorithm: DEPSO

Our proposal basically consists in running a PSO algorithm in which we incorporate ideas of
DE. For each particle p (with velocity and position vectors v and x, respectively) the velocity
is updated according to two main influences: social and differential variation factors. The social
factor concerns the local or global best position g of a given neighborhood of particles (being
global when this neighborhood is the entire swarm). The differential variation factor is composed
by using two randomly selected particle positions as made in DE. This way, for each particle xi

of the swarm, a differential vector (xt
r1 − xt

r2) is generated following the DE/rand/1 scheme of
canonical DE, by mean of which, particles xt

r1 and xt
r2 are randomly (uniformly) selected (with

it 6= r1t 6= r2t) from the whole swarm. Then, the new velocity vt+1
i of a particle i is calculated

according to the following equation:

vt+1
i ← ω · vt

i + F · (xt
r1 − xt

r2) + U t[0, ϕi] · (b
t
i − xt

i) (4.1)

where ω is the inertia weight of the particle that controls the trade-off between global and local
experience. Perturbation constant F = U(0, 1) is a scaling factor applied to the differential vector
and stands for the amplification of the difference between the individuals: it avoids the stagnation
of the search process. The third component corresponds to the social factor which is influenced by
the global best g of the swarm and directly proportional to the social coefficient ϕ. Therefore, in
the velocity calculation, the standard personal influence used in PSO is replaced in our proposal
by the differential vector F · (xt

r1 − xt
r2).

Similarly to DE, the update of each j component of the velocity vector of a given particle i is
carried out by means of a crossover operation with the target velocity vt+1

i to generate the trial
particle ut+1

i as specified in Equation 4.2.

ut+1
i (j) =

{
vt+1
i (j) if rt(j) ≤ Cr or j = jr,

vti(j) otherwise.
(4.2)

Here, r ∈ [0, 1] is a uniformly distributed value which determines if the jth component is selected
from the new velocity or is selected from the current velocity, based on the crossover probability
Cr ∈ [0, 1]. This mechanism is used to increase the exploitation ability of the algorithm, mostly
when tackling with non-separable fitness landscapes [PSL05]. Finally, a particle i updates its
position through the trial particle (ut+1

i ), only if the new one x′ti is lower or equal than the current
position xt

i (assuming minimization). In other case, the particle keeps its current position (see
equations 4.4 and 4.3).

xt+1
i =

{
x′ti if f(x′ti) ≤ f(xt

i)

xt
i otherwise,

(4.3)

being
x′

t
i ← xt

i + ut+1
i (4.4)

Additionally, with certain probability pmut, a mutation operation is made on each particle
in order to avoid an early convergence to a local optimum. The new mutated position xt+1 is
generated by means of the Equation 4.5.
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xt+1 ← xlow + U(0, 1) · (xupp − xlow) (4.5)

Vectors xlow and xupp correspond to lower and upper limits of each dimension of the function
to optimize, respectively.

Algorithm 4 Pseudocode of DEPSO

1: S ← initializeSwarm(Ss)
2: while t < MAXIMUMt do
3: for each particle i of S do
4: choose mutually different r1 and r2 values
5: vt+1

i ← velocityUpdate(ω,vt
i , F,x

t
r1,x

t
r2, ϕ,b

t
i,x

t
i) //Eq. 4.1

6: ut+1
i ← crossover(vt+1

i ,vt
i , Cr, jr) //Eq. 4.2

7: x′t
i ← positionUpdate(x′t

i,u
t+1
i ) //Eq. 4.4

8: evaluate(x′t
i)

9: xt+1
i ← selection(x′t

i,x
t
i) //Eq. 4.3

10: xt+1
i ← mutation(pmut,xupp,xlow) //Eq. 4.5

11: end for
12: end while

Algorithm 4 shows the pseudocode of our hybrid DEPSO. First, particles in the swarm S are
initialized as specified in [HAFR09a] (line 1). After this, each iteration step, each particle’s velocity
is updated (in line 5) applying differential vector perturbation and global best strategy. Then,
crossover and particle’s position update operations are performed in lines 6 and 7, respectively.
After evaluating the new moved particle in line 8, the selection operation is carried out (line 9).
Eventually, a mutation operation is performed depending on pmut in line 10. Finally, the algorithm
returns the best solution (particle’s position) found during the whole process.

4.3 Experiments on MAEB’09

In this section, experiments and results concerning the evaluation of DEPSO on MAEB’09 are
described and analyzed. We have implemented our proposal in C++ using the skeleton scheme
and classes provided by the MALLBA library [ALGN+07] of metaheuristics. For the sake of a
fair experimentation, we have to notice that, the same implementation of DEPSO, parameter set-
ting and hardware execution platform have been used for MAEB’09 experiments, as well as for
GECCO’09 ones (in the following section). The set of parameters used in DEPSO were selected
after preliminary runs resulting successful fine-tuned combination as shown in Table 4.1. Indepen-
dent runs were performed on a CONDOR [TTL05] middleware platform with Pentium IV 2.4 GHz
processors, 1GB RAM memory and Linux O.S.

The set of functions used in this experimentation consists of 20 multimodal functions chosen
from CEC’05 benchmark (defined in Chapter 3), from f6 to f25, with different properties of:
rotation, shifted optima to the origin of coordinates, non-separable variables and composition with
other complex functions. For this particular special session were considered two different problem
dimensions: 10 and 30 variables. As specified in CEC’05 benchmark procedure, a number of
25 independent runs have been performed by DEPSO for each function and for each problem
dimensionality. The stop condition has been established to a maximum number of 100, 000 · D
function evaluations to perform, or when a fitness error lower than 1.0E-08 is reached.
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Table 4.1: Parameter setting used in DEPSO
Description Parameter Value

Swarm size Ss 20

Crossover probability Cr 0.9

Inertia weight ω 0.1

Differential scaling factor F U(0, 1)

Social coefficient ϕ 2.05

Mutation probability pmut
1

DIM

4.3.1 MAEB’09: Results and Analysis

Tables 4.2 and 4.3 contain the error values obtained by our DEPSO concerning functions: f6 to
f15, and f16 to f25, respectively for dimension D = 10. These results are shorted in tables from
best to worst error values, being: 1st (Best), 7th, 13th (Median), 19th, and 25th (Worst), and they
are recorded at 1,000, 10,000, and 100,000 objective function evaluations. In addition, Means and
Standard Deviations are also showed. Tables 4.4 and 4.5 contain the resulted error values for
dimension D = 30. In this way, results are arranged as specified in CEC’05 (and recommended in
MAEB’09) to facilitate the analysis and comparison against other algorithms, at different stages
of the optimization process. Following this protocol, Figure 4.1 shows the different plots generated
from execution traces of DEPSO’s 13th runs (Median) concerning all benchmark functions with
dimension D = 30. Each curve shows the best fitness value at each iteration step of the 300,000
total evaluations.

For the analysis of results, we have compared the mean of error values (out of 25 inde-
pendent runs) obtained by DEPSO against those mean errors of three reference algorithms of
CEC’05 [SHL+05], that were suggested at MAEB’09 for comparing our proposal. These algo-
rithms are: Restarting and Increasing Population Covariance Matrix Adaptation Evolution Strat-
egy G-CMA-ES [AH05], A Population-Based Steady-State Genetic Algorithm K-PCX [STD05]
and Canonical Differential Evolution for Real Parameter Encoding DE [RKP05].

For this comparative analysis, we have used the statistical procedure of non-parametric tests
as detailed in [GMLH09], since as shown in this paper, the set of functions considered for the
experimentation does not fulfill at least one of the three conditions of: independency of samples,
normality of distributions and/or heteroscedasticity, required for the application of parametric
tests. In this way, we have considered the use of a Signed Ranking Wilcoxon test [Wil87], by mean
of which, we compare our DEPSO against each one of previously cited algorithms. We have opted
to use a confidence level of 95% in tests, meaning that if the resulted p-value is lower than 0.05,
then the null hypothesis is rejected, and the algorithm with the higher value is the best one, with
statistical significance.

Table 4.6 shows the results of applying the Wilcoxon test to the resulted error values of our
proposal versus the ones of: G-CMA-ES, K-PCX and DE, for dimensions 10 and 30. When
comparing a pair of techniques, for example, DEPSO and G-CMA-ES, value R+ indicates the
average ranking where algorithm G-CMA-ES obtained mean error values (f(x) − f(x∗)) lower
than the ones of DEPSO. Indicator R− shows the average ranking where DEPSO obtains lower
mean error values than G-CMA-ES. In this way, as we can observe in Table 4.6, for dimension
D = 10, DEPSO obtains better mean ranking than DE and K-PCX. For dimension 30, DEPSO
obtains better mean ranking than DE and G-CMA-ES. Nevertheless, the null hypothesis can not
be rejected in any case, and therefore, we can not assure that distribution of results are different.



C
H
A
P
T
E
R

4
.

D
E
P
S
O
:
H
Y
B
R
ID

P
S
O

W
IT

H
D
E

4
9

Table 4.2: Error values for functions f6 to f15 with dimension D = 10 and 100,000 evaluations
Evals. Exec. Num. f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

1E+03

1(Best) 4,71E+04 3,12E+00 2,05E+01 3,84E+01 3,53E+01 7,93E+00 2,66E+03 3,93E+00 3,73E+00 3,43E+02
7 1,70E+05 7,11E+00 2,06E+01 4,59E+01 4,80E+01 1,05E+01 6,70E+03 5,31E+00 4,03E+00 4,81E+02
13(Median) 2,33E+05 8,04E+00 2,06E+01 4,90E+01 5,58E+01 1,12E+01 9,50E+03 5,78E+00 4,14E+00 5,45E+02
19 3,49E+05 1,11E+01 2,07E+01 5,27E+01 6,22E+01 1,19E+01 1,17E+04 6,21E+00 4,25E+00 5,99E+02
25(Worst) 5,40E+05 1,21E+01 2,08E+01 5,95E+01 6,57E+01 1,22E+01 1,81E+04 6,50E+00 4,31E+00 6,16E+02
Mean 2,68E+05 8,26E+00 2,07E+01 4,93E+01 5,48E+01 1,11E+01 9,39E+03 5,60E+00 4,11E+00 5,35E+02
Std. Dev. 1,41E+05 2,60E+00 9,05E-02 5,92E+00 8,09E+00 9,67E-01 4,42E+03 6,81E-01 1,74E-01 7,50E+01

1E+04

1(Best) 5,40E-02 1,00E-02 2,03E+01 9,63E+00 2,25E+01 2,22E+00 2,00E-02 1,83E+00 2,79E+00 1,26E+02
7 4,18E+00 5,70E-02 2,04E+01 1,54E+01 2,76E+01 7,00E+00 1,03E+01 2,24E+00 3,43E+00 2,17E+02
13(Median) 4,82E+00 1,41E-01 2,05E+01 1,82E+01 3,36E+01 8,08E+00 1,25E+01 3,07E+00 3,66E+00 2,65E+02
19 6,21E+00 3,97E-01 2,05E+01 2,24E+01 3,62E+01 8,85E+00 5,52E+01 3,20E+00 3,76E+00 4,02E+02
25(Worst) 9,25E+00 5,61E-01 2,06E+01 2,58E+01 3,84E+01 9,99E+00 7,27E+02 3,33E+00 3,81E+00 4,27E+02
Mean 4,97E+00 2,15E-01 2,05E+01 1,79E+01 3,19E+01 7,61E+00 8,93E+01 2,82E+00 3,56E+00 2,81E+02
Std. Dev. 2,22E+00 1,90E-01 9,23E-02 4,46E+00 5,04E+00 1,84E+00 1,99E+02 5,01E-01 2,49E-01 9,91E+01

1E+05

1(Best) 0,00E+00 7,00E-03 2,02E+01 0,00E+00 3,01E+00 1,00E-04 0,00E+00 5,25E-01 1,02E+00 0,00E+00
7 2,50E-02 4,40E-02 2,03E+01 9,95E-01 5,97E+00 2,02E-01 9,40E-02 9,13E-01 2,13E+00 6,30E+01
13(Median) 4,50E-02 5,70E-02 2,03E+01 1,99E+00 7,97E+00 1,09E+00 1,00E+01 1,41E+00 2,42E+00 8,97E+01
19 8,70E-02 9,60E-02 2,04E+01 2,99E+00 1,44E+01 1,75E+00 1,88E+01 1,72E+00 2,75E+00 1,39E+02
25(Worst) 4,00E+00 1,30E-01 2,04E+01 3,98E+00 2,11E+01 2,01E+00 7,12E+02 1,87E+00 2,92E+00 4,20E+02
Mean 4,75E-01 6,46E-02 2,03E+01 1,99E+00 1,02E+01 1,00E+00 3,70E+01 1,32E+00 2,31E+00 1,34E+02
Std. Dev. 1,12E+00 3,18E-02 5,01E-02 1,18E+00 5,12E+00 7,65E-01 1,41E+02 4,45E-01 5,42E-01 1,28E+02

Table 4.3: Error values for functions f16 to f25 with dimension D = 10 and 100,000 evaluations
Evals. Exec. Num. f16 f17 f18 f19 f20 f21 f22 f23 f24 f25

1E+03

1(Best) 2,00E+02 1,69E+02 8,43E+02 8,41E+02 4,08E+02 5,66E+02 6,26E+02 6,16E+02 3,02E+02 2,79E+02
7 2,30E+02 2,63E+02 9,32E+02 9,37E+02 5,81E+02 9,85E+02 8,23E+02 1,02E+03 4,17E+02 4,13E+02
13(Median) 2,50E+02 2,85E+02 1,01E+03 1,01E+03 7,12E+02 1,16E+03 8,38E+02 1,20E+03 5,98E+02 6,05E+02
19 2,66E+02 2,93E+02 1,06E+03 1,06E+03 8,33E+02 1,22E+03 8,64E+02 1,22E+03 7,49E+02 7,74E+02
25(Worst) 2,73E+02 3,17E+02 1,08E+03 1,08E+03 9,63E+02 1,24E+03 9,44E+02 1,25E+03 9,10E+02 1,02E+03
Mean 2,47E+02 2,71E+02 9,87E+02 9,98E+02 7,18E+02 1,05E+03 8,44E+02 1,11E+03 5,94E+02 5,96E+02
Std. Dev. 2,08E+01 3,32E+01 7,10E+01 7,42E+01 1,61E+02 2,23E+02 5,98E+01 1,76E+02 1,96E+02 2,16E+02

1E+04

1(Worst) 1,36E+02 1,58E+02 3,00E+02 3,00E+02 2,00E+02 3,00E+02 1,00E+02 3,00E+02 2,00E+02 2,00E+02
7 1,64E+02 1,88E+02 8,00E+02 8,00E+02 2,00E+02 3,00E+02 7,74E+02 3,00E+02 2,00E+02 2,00E+02
13(Median) 1,71E+02 1,97E+02 8,00E+02 8,00E+02 2,00E+02 3,00E+02 7,76E+02 3,00E+02 2,00E+02 2,00E+02
19 1,78E+02 2,05E+02 8,00E+02 9,08E+02 2,00E+02 5,00E+02 8,00E+02 8,00E+02 2,00E+02 2,00E+02
25(Worst) 1,88E+02 2,17E+02 9,33E+02 9,49E+02 2,00E+02 9,00E+02 8,00E+02 1,05E+03 5,00E+02 5,00E+02
Mean 1,68E+02 1,94E+02 7,05E+02 7,83E+02 2,00E+02 4,64E+02 7,37E+02 5,23E+02 2,68E+02 2,48E+02
Std. Dev. 1,46E+01 1,59E+01 2,21E+02 1,79E+02 0,00E+00 2,12E+02 1,65E+02 2,76E+02 1,25E+02 1,12E+02

1E+05

1(Best) 8,21E+01 1,03E+02 3,00E+02 3,00E+02 2,00E+02 3,00E+02 1,00E+02 3,00E+02 2,00E+02 2,00E+02
7 9,84E+01 1,17E+02 8,00E+02 8,00E+02 2,00E+02 3,00E+02 7,60E+02 3,00E+02 2,00E+02 2,00E+02
13(Median) 1,06E+02 1,24E+02 8,00E+02 8,00E+02 2,00E+02 3,00E+02 7,64E+02 3,00E+02 2,00E+02 2,00E+02
19 1,12E+02 1,29E+02 8,00E+02 9,08E+02 2,00E+02 5,00E+02 8,00E+02 8,00E+02 2,00E+02 2,00E+02
25(Worst) 1,20E+02 1,52E+02 9,32E+02 9,46E+02 2,00E+02 9,00E+02 8,00E+02 1,05E+03 5,00E+02 5,00E+02
Mean 1,05E+02 1,25E+02 7,05E+02 7,82E+02 2,00E+02 4,64E+02 7,29E+02 5,23E+02 2,68E+02 2,48E+02
Std. Dev. 9,49E+00 1,05E+01 2,21E+02 1,78E+02 0,00E+00 2,12E+02 1,63E+02 2,76E+02 1,25E+02 1,12E+02
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Table 4.4: Error values for functions f6 to f15 with dimension D = 30 and 300,000 evaluations
Evals. Exec. Num. f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

3E+03

1(Best) 7,26E+08 2,92E+01 2,10E+01 1,88E+02 2,13E+02 3,97E+01 1,09E+05 1,92E+01 1,35E+01 4,86E+02
7 2,15E+09 3,99E+01 2,11E+01 2,23E+02 2,68E+02 4,17E+01 1,50E+05 2,36E+01 1,37E+01 5,56E+02
13(Median) 3,18E+09 4,88E+01 2,11E+01 2,43E+02 2,79E+02 4,31E+01 1,79E+05 2,46E+01 1,38E+01 6,10E+02
19 4,77E+09 5,89E+01 2,12E+01 2,60E+02 2,87E+02 4,35E+01 2,10E+05 2,50E+01 1,39E+01 6,49E+02
25(Worst) 9,68E+09 6,39E+01 2,12E+01 2,66E+02 2,94E+02 4,50E+01 2,96E+05 2,59E+01 1,41E+01 7,32E+02
Mean 3,68E+09 4,88E+01 2,11E+01 2,38E+02 2,73E+02 4,27E+01 1,85E+05 2,42E+01 1,38E+01 6,04E+02
Std. Dev. 2,24E+09 1,05E+01 5,28E-02 2,49E+01 2,04E+01 1,45E+00 5,13E+04 1,55E+00 1,49E-01 7,09E+01

3E+04

1(Best) 4,10E+00 0,00E+00 2,09E+01 5,59E+01 1,50E+02 3,85E+01 1,04E+03 1,56E+01 1,28E+01 2,06E+02
7 2,32E+01 1,70E-02 2,10E+01 1,15E+02 1,97E+02 4,03E+01 4,50E+03 1,70E+01 1,32E+01 2,20E+02
13(Median) 2,59E+01 2,50E-02 2,10E+01 1,41E+02 2,08E+02 4,10E+01 8,58E+03 1,80E+01 1,34E+01 3,00E+02
19 7,36E+01 3,80E-02 2,11E+01 1,52E+02 2,24E+02 4,14E+01 1,17E+04 1,85E+01 1,36E+01 3,30E+02
25(Worst) 2,00E+03 5,40E-02 2,11E+01 1,60E+02 2,33E+02 4,20E+01 2,00E+04 1,92E+01 1,36E+01 4,06E+02
Mean 1,43E+02 2,76E-02 2,10E+01 1,30E+02 2,06E+02 4,08E+01 8,59E+03 1,77E+01 1,34E+01 2,95E+02
Std. Dev. 3,99E+02 1,36E-02 3,96E-02 3,09E+01 2,19E+01 9,25E-01 5,19E+03 1,06E+00 2,23E-01 7,34E+01

3E+05

1(Best) 0,00E+00 0,00E+00 2,08E+01 1,49E+01 5,38E+01 1,05E+01 4,20E+02 2,42E+00 1,20E+01 2,02E+02
7 1,00E-03 1,00E-02 2,09E+01 2,29E+01 1,50E+02 1,32E+01 1,47E+03 3,97E+00 1,27E+01 2,17E+02
13(Median) 5,90E-02 1,00E-02 2,09E+01 2,49E+01 1,74E+02 1,58E+01 2,60E+03 1,10E+01 1,28E+01 3,00E+02
19 3,99E+00 2,00E-02 2,10E+01 2,69E+01 1,79E+02 3,18E+01 5,08E+03 1,30E+01 1,30E+01 3,29E+02
25(Worst) 8,50E+00 3,20E-02 2,10E+01 3,38E+01 1,91E+02 3,81E+01 8,22E+03 1,58E+01 1,31E+01 4,04E+02
Mean 1,75E+00 1,34E-02 2,09E+01 2,49E+01 1,64E+02 2,06E+01 3,30E+03 9,65E+00 1,28E+01 2,90E+02
Std. Dev. 2,51E+00 7,95E-03 4,63E-02 4,84E+00 2,86E+01 1,06E+01 2,43E+03 4,80E+00 2,76E-01 7,64E+01

Table 4.5: Error values for functions f16 to f25 with dimension D = 30 and 300,000 evaluations
Evals. Exec. Num. f16 f17 f18 f19 f20 f21 f22 f23 f24 f25

3E+03

1(Best) 2,66E+02 3,01E+02 9,07E+02 9,05E+02 9,92E+02 5,20E+02 6,36E+02 5,22E+02 4,38E+02 4,14E+02
7 2,94E+02 3,41E+02 9,18E+02 9,20E+02 1,01E+03 5,34E+02 6,57E+02 5,30E+02 4,94E+02 5,40E+02
13(Median) 3,18E+02 3,72E+02 9,27E+02 9,24E+02 1,05E+03 5,51E+02 7,30E+02 5,41E+02 5,56E+02 5,88E+02
19 3,30E+02 4,44E+02 9,35E+02 9,29E+02 1,16E+03 6,11E+02 8,79E+02 5,86E+02 5,77E+02 6,19E+02
25(Worst) 4,29E+02 4,86E+02 9,37E+02 9,48E+02 1,27E+03 1,00E+03 9,05E+02 8,44E+02 6,92E+02 7,00E+02
Mean 3,27E+02 3,84E+02 9,26E+02 9,25E+02 1,09E+03 6,12E+02 7,67E+02 5,91E+02 5,46E+02 5,78E+02
Std. Dev. 4,56E+01 5,79E+01 9,44E+00 9,37E+00 1,00E+02 1,43E+02 1,09E+02 1,03E+02 6,67E+01 7,44E+01

3E+04

1(Best) 2,08E+02 2,43E+02 8,58E+02 8,59E+02 9,00E+02 5,09E+02 5,02E+02 5,09E+02 2,38E+02 2,39E+02
7 2,21E+02 2,61E+02 8,63E+02 8,62E+02 9,00E+02 5,09E+02 5,04E+02 5,10E+02 2,42E+02 2,43E+02
13(Median) 2,46E+02 2,74E+02 8,64E+02 8,64E+02 9,00E+02 5,10E+02 5,05E+02 5,10E+02 2,44E+02 2,45E+02
19 2,59E+02 3,01E+02 8,65E+02 8,66E+02 9,00E+02 5,10E+02 5,50E+02 5,10E+02 2,47E+02 2,47E+02
25(Worst) 3,37E+02 3,76E+02 8,69E+02 8,71E+02 1,18E+03 8,00E+02 5,50E+02 5,10E+02 2,49E+02 2,48E+02
Mean 2,52E+02 2,91E+02 8,64E+02 8,64E+02 9,40E+02 5,33E+02 5,21E+02 5,10E+02 2,44E+02 2,45E+02
Std. Dev. 3,66E+01 4,21E+01 2,75E+00 3,08E+00 9,31E+01 8,04E+01 2,25E+01 2,25E-01 3,14E+00 2,49E+00

3E+05

1(Best) 3,82E+01 6,40E+01 8,35E+02 8,27E+02 9,00E+02 5,09E+02 5,00E+02 5,09E+02 2,32E+02 2,32E+02
7 1,73E+02 2,21E+02 8,55E+02 8,56E+02 9,00E+02 5,09E+02 5,00E+02 5,10E+02 2,34E+02 2,33E+02
13(Median) 2,01E+02 2,27E+02 8,59E+02 8,58E+02 9,00E+02 5,10E+02 5,01E+02 5,10E+02 2,34E+02 2,34E+02
19 2,17E+02 2,48E+02 8,62E+02 8,60E+02 9,00E+02 5,10E+02 5,50E+02 5,10E+02 2,35E+02 2,35E+02
25(Worst) 2,93E+02 3,25E+02 8,65E+02 8,62E+02 1,18E+03 8,00E+02 5,50E+02 5,10E+02 2,35E+02 2,37E+02
Mean 1,87E+02 2,22E+02 8,57E+02 8,55E+02 9,40E+02 5,33E+02 5,18E+02 5,10E+02 2,34E+02 2,34E+02
Std. Dev. 7,11E+01 6,59E+01 8,08E+00 8,57E+00 9,31E+01 8,04E+01 2,43E+01 2,24E-01 7,55E-01 1,34E+00
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Figure 4.1: Median execution trace of DEPSO for dimension 30. The mean error value in loga-
rithmic scale is plotted for each benchmark function

Table 4.6: Signed Rank test of DEPSO in comparison with G-CMA-ES, K-PCX and DE, for
dimensions 10 and 30 and with confidence level 95% (p-value=0.05)

Algorithm Dimension R+ R− p-value

G-CMA-ES
10 111 79 0,520
30 103 107 0,940

DE
10 102 108 0,911
30 82 128 0,391

K-PCX
10 66 144 0,145
30 111 79 0,520

Now, we directly compare the mean values resulted from our DEPSO with the ones of CEC’05
suggested in MAEB’09 procedure. Then, in Table 4.7 there is a summary of algorithms outper-
formed by our proposal for each benchmarking function and dimension. Columns 3 and 5 in this
table contains the relative position in which DEPSO is arranged with regards to other compared
algorithms. In this way, for function f15, DEPSO obtains better results than DE, K-PCX and
G-CMA-ES on dimension 10 (position=1) and better results than DE and K-PCX on dimension
30 (position=2). Therefore, we can observe that for dimension 10, DEPSO reaches the best result
for 6 functions and the worst one for 4 functions (symbol -). With dimension 30, DEPSO obtains
the best result for 3 functions, outperforms at least two other algorithms on 6 functions, and shows
the worst results only on 3 out of 20 functions.

In particular, if we examine the performance of DEPSO for each benchmark function, we can
observe that from functions f14 to f25, this algorithm obtains in general better results than for
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Table 4.7: Ranking positions of DEPSO for each function with regards to compared algorithms

Function
Dimension 10 Dimension 30

Alg. CEC’05 #DEPSO Alg. CEC’05 #DEPSO
f6 DE 3 DE, K-PCX 2
f7 DE, K-PCX 2 K-PCX 3
f8 DE 3 DE 3
f9 - 4 - 4
f10 DE 3 - 4
f11 K-PCX 3 DE, K-PC 2
f12 K-PCX 3 C-MA-ES 3
f13 - 4 DE 3
f14 DE, K-PCX, C-MA-ES 1 DE, K-PCX, C-MA-ES 1
f15 DE, K-PCX, C-MA-ES 1 DE, K-PCX 2
f16 DE 3 DE 3
f17 - 4 DE, C-MA-ES 2
f18 K-PCX 3 DE, C-MA-ES 2
f19 - 4 DE, C-MA-ES 2
f20 DE, K-PCX, C-MA-ES 1 - 4
f21 DE, K-PCX, C-MA-ES 1 K-PCX 3
f22 C-MA-ES 3 DE, K-PCX, C-MA-ES 1
f23 DE, K-PCX, C-MA-ES 1 DE, K-PCX, C-MA-ES 1
f24 K-PCX 3 C-MA-ES 3
f25 DE, K-PCX, C-MA-ES 1 DE 3

previous functions, f1 to f13. That is, the performance of our proposal is relatively better for
composed functions than for simple ones, with regards to the three compared algorithms. We have
to notice that functions f14 to f25 are in general rotated non-separable, so this fact leads us to
argue that hybridizing PSO with DE differential operators provides the first algorithm with search
capabilities on these kind of functions, on which, PSO initially showed a limited performance.
In addition, DEPSO also shows better performance than canonical DE, since for dimension 10
the former outperformed the later on 11 functions (out of 20), and for dimension 30, DEPSO
outperformed DE on 14 functions out of 20. Nevertheless, there are still three exceptions on
functions: f17, f19 and f20, for which DEPSO resulted in the last position. It might be due to
the intrinsic noisy nature of these three functions with narrow basin of global optimum, so let us
experiment this issue thoroughly on another extensive, and completely different benchmark, with
noisy and noiseless functions in next section of this chapter.

4.4 Experiments on BBOB’09

In the case of BBOB’09 test suite, the experimentation procedure has been carried out according
to [HAFR09a] on the two benchmarks of: 24 noiseless functions given in [FHRA09a, HFRA09a]
and 30 noisy functions given in [FHRA09b, HFRA09b]. These two sets of functions were tackled
connecting the C-code of the Black-Box Optimization Benchmarking to our implementation of
DEPSO. Each candidate solution was sampled uniformly in [−5, 5]D, where D represents the
search space dimension. The maximum number of function evaluation was set to 1000×D.

Our proposal was tested performing 15 independent runs for each noiseless and noisy function
and each dimension. Table 4.1 shows the parameter setting used to configure DEPSO. As previously
explained, these parameters were tuned in the context of the special session of MAEB’09 for
real parameter optimization [SHL+05, GNAAL09] reaching results statistically similar to the best
participant algorithms (G-CMA-ES and K-PCX) in that session. This parameterization was kept
the same for all the experiments, and therefore the crafting effort [HAFR09a] is zero.
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Table 4.8: Noiseless Functions ranked by num-
ber of successful trials obtained by DEPSO

Dimensions

2 3 5 10 20 40

f1 f1 f1 f1 f5 f5

f2 f2 f2 f5 - -

f3 f5 f5 f2 - -

f5 f6 f7 f21 - -

f6 f21 f21 - - -

f7 f7 f6 - - -

f21 f3 f22 - - -

f22 f20 - - - -

f20 f22 - - - -

f12 f4 - - - -

f15 f17 - - - -

f9 - - - - -

f17 - - - - -

f19 - - - - -

Table 4.9: Noisy Functions ranked by num-
ber of successful trials obtained by DEPSO

Dimensions

2 3 5 10 20 40

f101 f101 f101 f101 - -

f102 f102 f102 f102 - -

f113 f107 f107 - - -

f128 f113 f113 - - -

f107 f128 f128 - - -

f103 f103 - - - -

f115 f115 - - - -

f125 - - - - -

f130 - - - - -

f116 - - - - -

f105 - - - - -

4.4.1 GECCO’09: Numerical Experiments on Noiseless Functions

In this section, the results are presented and some discussions are made in terms of the number of
successful trials (fopt +∆f ≤ 10−8) reached for each kind of noiseless function: separable (f1-f5),
moderate (f6-f9), ill-conditioned (f10-f14), multimodal (f15-f19), and weak structure (f20-f24).

Figure 4.2 shows the Expected Running Time (ERT, •) to reach fopt+∆f and median number
of function evaluations of successful trials (+). As we can observe, our proposal obtains the
highest number of successful trials in separable, moderate and weak structure noiseless functions,
specifically in f1, f2, f5, f6, f7, f21, and f22 for dimensions 2, 3, and 5. We can notice that for f5
our DEPSO reaches the target optimum for all dimensions. In the scope of multimodal functions,
a lower number of successful trials was found for dimension 2 and 3 in f15, f17, and f19. For
ill-conditioned functions, only f12 shows successful trials (six) with dimension 2. As a summary,
in Table 4.8 the functions are ranked by means of the number of successful trials that DEPSO has
obtained with them (with the best ranked functions in the top).

In the analysis of the results with higher dimensions (20 and 40), the best behavior of our
proposal can be observed when facing separable noiseless functions as shown in Figure 4.2. Con-
cretely, with functions f1 and f5 where error precisions close to 10−8 were reached. In addition,
DEPSO obtained error values lower than 10−7 in the weak structured function f21 with dimension
20. Concerning the remaining functions, the best achieved ∆f precisions (of the median trials)
obtained by our proposal are always lower than e+ 0, although being some of them close to e− 3
as in f2 and f14. Only for f10, f15, and f14 our DEPSO obtained ∆f precisions higher than e+ 0.

4.4.2 GECCO’09: Numerical Experiments on Noisy Functions

In this section, the results are presented and some discussions are made in terms of the number of
successful trials (fopt +∆f ≤ 10−8) reached by DEPSO for each kind of noisy function: moderate
(f101-f106), severe (f107-f121), and severe multimodal (f122-f139).

Figure 4.3 shows the Expected Running Time (ERT, •) to reach fopt+∆f and median number
of function evaluations of successful trials (+). As we can observe, our proposal obtains the highest
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Figure 4.2: Expected Running Time (ERT, •) to reach fopt + ∆f and median number of func-
tion evaluations of successful trials (+), shown for ∆f = 10, 1, 10−1, 10−2, 10−3, 10−5, 10−8 (the
exponent is given in the legend of f1 and f24) versus dimension in log-log presentation. The
ERT(∆f) equals to #FEs(∆f) divided by the number of successful trials, where a trial is success-
ful if fopt + ∆f was surpassed during the trial. The #FEs(∆f) are the total number of function
evaluations while fopt+∆f was not surpassed during the trial from all respective trials (successful
and unsuccessful), and fopt denotes the optimal function value. Crosses (×) indicate the total
number of function evaluations #FEs(−∞). Numbers above ERT-symbols indicate the number
of successful trials. Annotated numbers on the ordinate are decimal logarithms. Additional grid
lines show linear and quadratic scaling
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Figure 4.3: Expected Running Time (ERT, •) to reach fopt + ∆f and median number of func-
tion evaluations of successful trials (+), shown for ∆f = 10, 1, 10−1, 10−2, 10−3, 10−5, 10−8 (the
exponent is given in the legend of f101 and f130) versus dimension in log-log presentation. The
ERT(∆f) equals to #FEs(∆f) divided by the number of successful trials, where a trial is success-
ful if fopt + ∆f was surpassed during the trial. The #FEs(∆f) are the total number of function
evaluations while fopt+∆f was not surpassed during the trial from all respective trials (successful
and unsuccessful), and fopt denotes the optimal function value. Crosses (×) indicate the total
number of function evaluations #FEs(−∞). Numbers above ERT-symbols indicate the number
of successful trials. Annotated numbers on the ordinate are decimal logarithms. Additional grid
lines show linear and quadratic scaling
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number of successful trials in moderate noise functions, specifically in dimensions 2, 3, 5 and 10, in
f101 and f102. With regards to severe noise functions, the target function is reached in 9 out of 15
trials for the lower dimensions. In severe noise multimodal functions, DEPSO obtains successful
trials in f125 and f130 for dimension 2, and in f128 for dimensions 2, 3 and 5. As a summary, in
Table 4.9 the functions are ranked by means of the number of successful trials that DEPSO has
obtained with them (with the best ranked functions in the top).

For higher dimensions (20 and 40), the best behavior of our proposal can be observed when
facing moderate noise functions as shown in Figure 4.3, concretely in functions f101 and f102 where
error precisions slightly higher than 10−5 were reached. Secondly, for severe noise and severe noise
multimodal functions (f122-f139, D=20), the best achieved ∆f precisions (of the median trials)
are always close to e+0, although being some of them close to e− 2 as in f109, f125, and f127. We
suspect that the relative low convergence rate in severe noise functions (for the higher dimensions)
can be due to the small number of maximal function evaluations employed (1000×D).

4.5 Run Time Analysis

For the timing experiment, the same DEPSO algorithm was run on f8 of BBOB’09 until at
least 30 seconds had passed (according to the exampletiming procedure available in BBOB
2009 [HAFR09a]). These experiments have been conducted with an Intel(R) Corel(TM)2 CPU
processor with 1.66 GHz and 1GB RAM; O.S Linux Ubuntu version 8.10 using the C-code pro-
vided. The results were 1.1, 0.9, 1.3, 2.3, 3.9, and 7.1 × e-06 seconds per function evaluation in
dimensions 2, 3, 5, 10, 20, and 40, respectively.

4.6 Conclusions

In this chapter we have empirically studied DEPSO, an easy to implement optimization algorithm
constructed by hybridizing the Particle Swarm Optimizer with Differential Evolution operations.
The experiments have been completed in the context of two Special Sessions of Real Parameter
Optimization with different sets of functions: MAEB’09/CEC’05 and GECCO BBOB’09. A total
number of 74 different functions of continuous optimization have been used to assess the perfor-
mance of DEPSO, dealing with complex noiseless and noisy functions with dimension: 2, 3, 5, 10,
20, 30 and 40 variables. In general, the following conclusions can be highlighted:

• On MAEB’09 test set, we experimented that hybridizing PSO with DE differential operators
provides the first algorithm with search capabilities on rotated and non-separable functions,
on which, PSO initially showed a limited performance. In addition, DEPSO also shows better
performance than canonical DE on a considerable number of functions for dimensions 10 and
30. In this sense, with regards to other compared algorithms in the state of the art, DEPSO
obtains better mean ranking than DE and K-PCX, for dimension D = 10, and better mean
ranking than DE and G-CMA-ES, for dimension D = 30. Nevertheless, the null hypothesis
can not be rejected in any case, and therefore, we can not assure that distribution of results
are different.

• On BBOB’09 noiseless functions, our proposal obtained an accurate level of coverage rate
for dimensions 2, 3, 5, and 10, specifically with separable and weak structured noiseless
functions. Successful trials were found for 14 out of 24 functions. Specifically for f5, our
proposal obtained successful trials for all dimensions.
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• On BBOB’09 test set noisy functions, DEPSO obtained an accurate level of coverage rate
for dimensions 2, 3, 5, and 10, specifically with moderate noise and severe noise multimodal
functions. Successful trials were found for 11 out of 30 functions.

The fact of using the same parameter setting for all functions (and dimensions), together with
the relatively small number of function evaluations used (1, 000×D), leads us to think that DEPSO
can be easily improved for better covering noiseless functions with higher dimensions. Future
experiments with different parameter settings depending of each family of noiseless functions, and
performing larger number of evaluations can be made in this sense.
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Chapter 5

RPSO-vm: Velocity Modulation
PSO for Large Scale Optimization

5.1 Introduction

In the evaluation of the search capabilities of a given optimization algorithm the usual approach
is to choose a benchmark of known problems, to perform a fixed number of function evaluations,
and to compare the results against the ones of other algorithms in the state of art. However, while
some real industry problems can have hundreds and thousands of variables, current benchmarks
are normally adopted with less than one hundred decision variables (see CEC’05 [SHL+05] and
BBOB’09 [HAFR09a] testbeds). Large scale continuous optimization have attracted more and
more interest (CEC’08 [TYS+07], ISDA’09 [HL09a], and CEC’10 [TLS+10]) since they introduce a
high complexity to the optimization process. Issues like the exponential increment of the solution
space, as well as the change that some problems exhibit as complex search landscapes with different
scales, can deteriorate quickly the performance of our optimization algorithms [SQ06]. In this way,
we can study certain mechanisms that show the best performance in short scale optimization
problems, which is the case of the covariance matrix in G-CMA-ES [AH05], but with an unsuitable
behavior for high dimensional functions (more than 100 variables). A different performance can
be observed in simple algorithms like MTS [TC08], which combines several local search strategies
using a small population. MTS was the best in the special session of large scale optimization of
CEC’08 [TYS+07], where functions with a thousand of variables were tackled.

All this motivates us to deeply analyze the scalable capacities of optimization algorithms. In
particular, Particle Swarm Optimization (PSO) [KE01] is a very simple and effective method
for continuous optimization. Nevertheless, this algorithm is characterized by an early convergence
behavior, mainly produced by the overinfluenced best solution and its relative facility to fall in local
optima [LQSB06, VdBE04]. For this reason, PSO usually suffers from an unsuccessful performance
on large dimension problems.

In this chapter, we have incorporated two mechanisms to the Particle Swarm Optimization
with the aim of enhancing its scalability [GNA11b]. First, a velocity modulation method is applied
in the movement of particles in order to guide them within the bounded search region. Second,
a restarting mechanism avoids the early convergence and redirects particles to promising areas
in the search space. To evaluate the scalability of the resulting approach, we have followed the
experimental framework proposed in the Special Issue of Soft Computing Journal on Scalability

59
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of Evolutionary Algorithms and other Metaheuristics for Large Scale Continuous Optimization
Problems (in URL http://sci2s.ugr.es/eamhco/CFP.php). We also studied the influence of
both velocity modulation and restarting mechanisms to show real insights of the improvement of
our proposal, called Restart PSO with Velocity Modulation (RPSO-vm), regarding the basic PSO.
The results obtained will confirm that RPSO-vm is scalable in all functions of the benchmark used,
as well as highly competitive in comparison with PSO and other well-known efficient optimizers.

The remaining of this chapter is organized as follows. Next section introduces our proposal
RPSO-vm. Section 5.3 describes the experimentation procedure with the benchmark of functions
and the parameter settings. In Section 5.4, experimental results are reported with comparisons,
analyses, and discussions. Finally, concluding remarks are given in Section 5.5.

5.2 The Algorithm: RPSO-vm

Our proposal, RPSO-vm, consists in running a PSO algorithm in which we have incorporated two
main ideas: velocity modulation and restarting mechanisms.

Using the velocity modulation, the algorithm controls that the overall movement calculated
in each evolution step and for each particle position does not exceed the limits (xlow , xupp) of
the problem domain. First, after calculating the new velocity value (vtaux(j)) RPSO-vm performs
a modulation procedure as showed in Algorithm 5. The velocity vector magnitude (v̂t

i) is then
bounded, which limits the given particle to move far from the interest area. These steps are
calculated in Algorithm 6 in Lines 7 and 8. Second, for each component j of the problem domain,
once obtained the new velocity vt+1

i (j), the overall movement is calculated, also controlling that the
new particle position (xt

aux(j)) does not exceed the problem limits for each dimension component.
If this happens, the new position is recalculated by subtracting the new velocity from the old
particle’s position (Lines 10 to 14 in Algorithm 6).

Algorithm 5 Pseudocode of V elmod procedure

1: if xlow(j) > vtaux(j) then
2: vt+1

i (j)← xj
low

3: else if vtaux(j) ≥ xupp(j) then
4: vt+1

i (j)← xupp(j)
5: end if
6: Output: vt+1

i (j) /*constricted velocity*/

A second phase of RPSO-vm concerns the restarting strategy. Similar to other well-known
algorithms like CHC [Esh91] and G-CMA-ES [AH05], our proposal is stopped whenever one stop-
ping criterion described below is met, and a restart is launched. The decision on when to restart
the algorithm is made according to two independent criteria:

1. Stop if the standard deviation of the fitness values of particles in the entire swarm is smaller
than 10−3. In this case, the particles are restarted by randomly initializing their positions
with a probability of 1/D (Lines 17 to 25 in Algorithm 6).

2. Stop if the overall change in the objective function value is below 10−8 for 10·D
Ss generations.

In this case, the particles are restarted by calculating their derivatives to the global best
position b and dividing them into two (Lines 26 to 32 in Algorithm 6). This way, we force
the particles to go to the best but avoiding the global convergence.
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Algorithm 6 Pseudocode of RPSO-vm

1: S ← initializeSwarm(Ss) /* Swarm S(0)*/
2: while t < MAXIMUMt do
3: /****************** Particle Swarm ******************/
4: for each particle position xi(t) of the swarm S(t) do
5: for each variable j of the particle’s position xt

i do
6: vtaux(j)← velocityUpdate(ω,vti(j), ϕ1, ϕ2, x

t
i(i), p

t
i(j), b

t
i(i))

7: vt+1
i (j)← velmod(vtaux(j))

8: xt
aux(j)← xt

i(j) + vt+1
i (j)

9: if xlow(j) < xt
aux(j) ≤ xupp(j) then

10: xt+1
i (j)← xt

aux(j)
11: else
12: xt+1

i (j)← xt
i(j)− vt+1

i (j)
13: end if
14: end for
15: end for
16: /******************** Restarting ********************/
17: if std(S) < 10−3 then
18: for each particle’s position xi(t) of S

t (with xt
i 6= bt) do

19: for each variable j of the particle’s position xt
i do

20: if rt(j) < 1/D (with rt(j) ∈ [0, 1]) then
21: xt+1

i (j)← xlow(j) + U(0, 1) · (xupp(j) − xlow(j))
22: end if
23: end for
24: end for
25: end if
26: if change(f(b)) < 10−8 for 10·D

Ss
steps then

27: for each particle’s position xt
i of St (with xt

i 6= bt) do
28: for each variable j of the particle’s position xt

i do

29: xt+1
i (j)←

bt(j)−xt
i(j)

2

30: end for
31: end for
32: end if
33: end while
34: Output: b /*The best solution found so far*/

Applying the first restarting criteria, our algorithm tries to mitigate the early stagnation that
basic PSO usually suffers, specially in multimodal functions. In spite of working with high inertia
and/or high social influences (ϕ1 and ϕ2), which moves the particles to distant positions, the PSO
tends to be easily trapped in unproductive regions. This drawback is specially sensitive in functions
with multiple basins of local optima such as Rastrigin and its hybrids.

The second restarting criteria is based on the existence of plateaus and quite regular regions
in functions like Rosenbrock, Schwefel, and their hybrids, that makes the PSO to spent a number
of function evaluations (with time and computing resources) without an effective improvement. In
this case, particles tend to spread them in the search space avoiding an strong influence of the
global best particle. Therefore, after certain number of function evaluations without improvement,
particles are moved to their derivatives with regards to the best position.

Algorithm 6 shows the complete pseudocode of RPSO-vm. First, an initialization process of
all particles in the swarm S is carried out. After this, each evolution step the particle’s positions
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are updated following the velocity variation model of the equations previously explained (Lines 4
to 15). If stopping criterions are reached, the algorithm restarts modifying the particles, excepting
the best one (Lines 17 to 32). Finally, the algorithm returns the best solution found during the
whole process.

5.3 Experimental Setup

In this section, we present the experimental methodology and statistical procedure followed to
evaluate and to compare our proposal. This experimentation has been defined in the scope of the
Special Issue on Scalability of Evolutionary Algorithms and other Metaheuristics for Large Scale
Continuous Optimization Problems (SOCO’10), in URL http://sci2s.ugr.es/eamhco/CFP.php.

We have implemented our RPSO-vm in C++ using the MALLBA library [ALGN+07], a frame-
work of metaheuristics. The benchmark of functions was tackled including the C-code provided
in this Special Issue to our implementation of RPSO-vm1. Following the specifications of the
SOCO’10 experimental procedure, we have performed 25 independent runs of RPSO-vm for each
test function and dimension. The study has been made with dimension D = 50, 100, 200, 500, and
1, 000 continuous variables. The measures provided are the Average, the Maximum, the Minimum,
and the Median of error of the best individuals found in the 25 runs. For a given solution x,
the error measure is defined as: f(x) − f∗, where f∗ is the optimum fitness of the function. The
maximum number of fitness evaluations has been stated to 5, 000 ·D, which constitutes the stop
condition of each run.

To analyze the results we have used non-parametric [She07] tests. These tests use the mean
ranking of each algorithm. We have applied them since several times the functions might not
follow the conditions of normality and homoskedasticity to apply parametric tests with secu-
rity [GMLH09]. In particular, we have considered the application of the Iman and Davenport’s
test, and Holm’s test as post-hoc procedure. The former is used to know beforehand if there are
statistically relevant differences among the compared algorithms. In that case, a post-hoc proce-
dure, the Holms test, is then employed to know which algorithms are statistically worse than the
reference algorithm with the best ranking.

5.3.1 Benchmark Functions

The test suite elaborated for SOCO’10 is composed by 19 functions with different properties [HLM10b]:
unimodal, multimodal, separable, non-separable, shifted, and hybrid composed. Functions 1 to 6
were defined for CEC’08 [TYS+07] and functions 7 to 11 were defined for ISDA’09 [HL09a] (and
shifted for SOCO’10), where the previous ones were also used. Finally, functions 12 to 19 have
been created specifically for this benchmark. Table 3.2 in Chapter 3 shows their names, bounds,
features and optimum values2. We describe here several properties of these functions that we
consider interesting.

• Functions f1 and f2 are shifted unimodal, functions f3 to f6 are shifted multimodal and
functions f7 to f11 are shifted unimodal.

1A complete package of this software is available in the new version release of MALLBA Library
http://neo.lcc.uma.es/mallba/easy-mallba/html/mallba.html. Directory Mallba/rep/PSO/soco2010

2In Table 3.2 of Chapter 3, SOCO’10 functions are referred to soco*, from soco1 to soco19
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• Functions f2, f3, f5, f9, and f10 are non-separable. We are interested to analyze if our proposal
obtains good results in non-separable functions, since we can observe its capacity of managing
correlated variables, a typical property in real world problems.

• Functions f12 to f19 are hybrid composition functions. They have been generated by compos-
ing (⊕) two functions, one or both of them non-separable. For these compositions, functions
f7 to f11 have been used in their non-shifted versions (NS). A composition uses a splitting
mechanism to graduate the proportion (⊕proportion in Table 3.2 of Chapter 3) of non-separable
variables in the complete search space.

Table 5.1: Parameter setting used in RPSO-vm
Description Parameter Value
Swarm size Ss 10
Inertia weight ω 0.0← 0.1
Individual coefficient ϕ1 1.5
Social coefficient ϕ2 1.5

5.3.2 Parameter Settings

Table 5.1 shows the parameter settings used to configure our proposal, RPSO-vm. These parame-
ters were tuned in the context of the ISDA’09 special session of real parameter optimization [HL09a]
reaching results statistically similar to the best participant algorithm in that special session. These
values of parameters were kept the same for all the experiments.

5.4 Analysis of Results

In this section, the results are presented and several analyses are made as follows: first, we carry
out a brief analysis of the performance of our proposal in terms of the improvement obtained by
both, velocity modulation and restarting mechanisms. In this sense, an additional comparison
is made concerning the neighborhood topology of RPSO-vm in terms of global best versus local
best guidance of particles. Second, the scalability analysis is tackled in comparison with provided
results of other algorithms (DE, CHC, and G-CMA-ES) for all dimensions. Finally, we present the
computational effort required in terms of average running time.

5.4.1 RPSO-vm Numerical Results

As specified in benchmarking requirements of SOCO’10 [HLM10b], we show in Tables 5.2 and 5.3
the Average, the Maximum, the Minimum, and the Median of the best error values found in 25
independent runs of our RPSO-vm, for each function and for each dimension. In this table, we
have marked in bold face the average error values since they will be used for comparisons (as
recommended in this testbed). Nevertheless, we can notice that median values are frequently
better than average values, especially in shifted Extended f10 (f9) and several hybrid functions
(f14, f16 and f17) where the distribution of results are scattered.
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Table 5.2: Maximum, Minimum, Median, and Mean Errors obtained by RPSO-vm for functions f1 to f10 and for all dimensions
D. Value f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

50

Max 2.84E-14 1.58E-02 1.86E+04 2.84E-14 3.20E-01 1.78E-11 1.78E-14 2.13E+03 6.77E+00 0.00E+00
Med 2.68E-14 6.60E-03 1.90E+01 2.66E-14 7.36E-02 2.66E-13 0.00E+00 1.04E+03 3.12E-06 0.00E+00
Min 1.87E-14 4.36E-03 5.21E-02 0.00E+00 0.00E+00 1.24E-13 0.00E+00 4.37E+02 0.00E+00 0.00E+00
Mean 2.62E-14 7.54E-03 1.75E+03 2.30E-14 9.53E-02 1.49E-12 1.14E-15 1.06E+03 2.94E-01 0.00E+00

100

Max 2.84E-14 2.92E-01 9.65E+03 2.84E-14 3.18E-01 9.52E-11 0.00E+00 1.89E+04 2.80E+00 0.00E+00
Med 2.80E-14 2.01E-01 1.19E+02 2.77E-14 8.80E-02 6.32E-13 0.00E+00 1.05E+04 2.58E-05 0.00E+00
Min 1.57E-14 1.17E-01 3.57E-01 1.17E-14 1.31E-14 2.42E-13 0.00E+00 6.82E+03 5.93E-07 0.00E+00
Mean 2.66E-14 1.98E-01 1.42E+03 2.61E-14 1.07E-01 4.76E-12 0.00E+00 1.09E+04 1.85E-01 0.00E+00

200

Max 2.84E-14 2.49E+00 6.60E+03 2.84E-14 7.74E-01 8.20E-12 0.00E+00 7.06E+04 2.51E+01 0.00E+00
Med 2.75E-14 2.01E+00 6.80E+01 2.74E-14 1.18E-01 1.89E-12 0.00E+00 5.05E+04 1.48E-03 0.00E+00
Min 0.00E+00 1.65E+00 8.75E-02 0.00E+00 1.35E-14 6.96E-13 0.00E+00 3.81E+04 1.35E-06 0.00E+00
Mean 2.53E-14 2.00E+00 1.03E+03 2.43E-14 1.73E-01 2.95E-12 0.00E+00 5.23E+04 1.67E+00 0.00E+00

500

Max 2.84E-14 1.81E+01 1.47E+04 2.84E-14 6.01E-01 7.01E-12 1.13E-14 3.62E+05 2.28E+01 0.00E+00
Med 2.82E-14 1.71E+01 1.38E+02 2.77E-14 2.52E-01 2.59E-12 0.00E+00 3.00E+05 1.81E+00 0.00E+00
Min 1.73E-14 1.49E+01 2.70E-02 0.00E+00 1.42E-14 1.21E-12 0.00E+00 2.47E+05 1.90E-03 0.00E+00
Mean 2.65E-14 1.67E+01 1.13E+03 2.44E-14 2.54E-01 3.14E-12 0.00E+00 3.00E+05 4.85E+00 0.00E+00

1,000

Max 2.84E-14 4.69E+01 2.07E+03 3.03E-13 8.68E-01 2.41E-11 1.55E-14 1.14E+06 3.17E+01 0.00E+00
Med 2.82E-14 4.29E+01 1.37E+02 2.78E-14 1.12E-01 3.75E-12 0.00E+00 9.21E+05 9.84E+00 0.00E+00
Min 2.07E-14 3.99E+01 1.85E+01 2.27E-14 1.22E-14 2.60E-12 0.00E+00 7.39E+05 6.45E-02 0.00E+00
Mean 2.72E-14 4.29E+01 3.21E+02 4.81E-14 2.14E-01 4.92E-12 0.00E+00 9.35E+05 1.17E+01 0.00E+00

Table 5.3: Maximum, Minimum, Median, and Mean Errors obtained by RPSO-vm for functions f11 to f19 and for all dimensions
D. Value f11 f12 f13 f14 f15 f16 f17 f18 f19

50

Max 3.07E-01 2.14E+00 1.49E+04 1.04E+00 0.00E+00 1.05E-09 9.08E+03 1.26E+00 0.00E+00
Med 3.84E-06 0.00E+00 1.43E+01 1.72E-14 0.00E+00 1.68E-11 5.06E+01 3.18E-09 0.00E+00
Min 0.00E+00 0.00E+00 2.67E-02 0.00E+00 0.00E+00 2.20E-12 9.41E-01 4.60E-10 0.00E+00
Mean 1.68E-02 8.58E-02 6.57E+02 6.81E-02 0.00E+00 7.88E-11 8.73E+02 5.05E-02 0.00E+00

100

Max 3.83E+00 2.30E-13 2.56E+04 1.20E+00 0.00E+00 1.11E-06 3.56E+04 1.61E+00 0.00E+00
Med 1.84E-05 0.00E+00 1.06E+02 4.38E-14 0.00E+00 4.64E-10 1.51E+02 5.04E-08 0.00E+00
Min 2.58E-08 0.00E+00 5.36E-02 0.00E+00 0.00E+00 5.17E-12 1.71E-01 1.46E-09 0.00E+00
Mean 4.61E-01 1.60E-14 2.25E+03 1.27E-01 0.00E+00 4.87E-08 1.76E+03 1.36E-01 0.00E+00

200

Max 3.73E+00 1.16E+00 1.23E+05 9.95E-01 0.00E+00 1.29E+01 2.40E+05 3.73E+00 0.00E+00
Med 5.47E-02 2.79E-14 1.48E+02 3.23E-12 0.00E+00 1.02E-09 2.77E+02 2.60E-08 0.00E+00
Min 4.37E-05 0.00E+00 7.56E-01 1.50E-14 0.00E+00 5.35E-11 1.31E-01 3.33E-09 0.00E+00
Mean 5.66E-01 4.64E-02 1.17E+04 7.96E-02 0.00E+00 5.40E-01 2.08E+04 1.50E-01 0.00E+00

500

Max 1.56E+01 2.98E-07 1.79E+04 1.36E+01 0.00E+00 3.04E+01 8.31E+03 1.41E+01 0.00E+00
Med 3.95E+00 2.75E-13 7.20E+01 2.50E-11 0.00E+00 3.46E-08 2.16E+01 7.80E-01 0.00E+00
Min 1.70E-03 0.00E+00 2.74E-01 2.05E-13 0.00E+00 6.84E-10 7.85E-01 1.44E-08 0.00E+00
Mean 4.88E+00 1.32E-08 1.33E+03 1.29E+00 0.00E+00 2.12E+00 5.72E+02 2.47E+00 0.00E+00

1,000

Max 3.67E+01 1.16E-08 2.78E+04 2.60E+00 0.00E+00 7.53E+00 3.28E+04 6.52E+00 0.00E+00
Med 9.61E+00 2.02E-12 2.27E+02 4.07E-08 0.00E+00 2.19E-06 4.02E+01 1.33E+00 0.00E+00
Min 7.67E-02 2.98E-14 4.16E+01 5.39E-13 0.00E+00 6.27E-09 1.79E+00 2.93E-07 0.00E+00
Mean 1.10E+01 1.00E-09 1.93E+03 5.27E-01 0.00E+00 9.50E-01 2.82E+03 1.80E+00 0.00E+00
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Table 5.4: Mean Errors obtained by RPSO-vm, RPSO, PSO-vm, and PSO for dimension 1,000
F/D RPSO-vm RPSO PSO-vm PSO (lb)RPSO-vm
f1 2.72E-14 2.69E-14 5.61E+06 5.55E+06 6.31E+06
f2 4.29E+01 4.38E+01 1.72E+02 1.72E+02 1.89E+02
f3 3.21E+02 1.26E+04 5.43E+12 5.54E+12 7.65E+12
f4 4.81E-14 3.98E-02 2.32E+04 2.32E+04 2.56E+04
f5 2.14E-01 1.77E-01 4.98E+04 5.05E+04 5.65E+04
f6 4.92E-12 5.13E-12 2.14E+01 2.14E+01 2.15E+01
f7 0.00E+00 2.00E-14 4.93E+03 4.98E+03 3.34E+27
f8 9.35E+05 9.38E+05 2.03E+07 2.53E+07 8.33E+07
f9 1.17E+01 1.34E+01 1.20E+04 1.20E+04 1.28E+04
f10 0.00E+00 0.00E+00 2.16E+05 2.16E+05 2.57E+05
f11 1.10E+01 1.33E+01 1.20E+04 1.20E+04 1.28E+04
f12 1.00E-09 1.15E-01 4.20E+06 4.18E+06 4.73E+06
f13 1.93E+03 7.38E+02 4.13E+12 4.01E+12 5.86E+12
f14 5.27E-01 6.28E-01 1.76E+04 1.78E+04 1.96E+04
f15 0.00E+00 0.00E+00 3.81E+04 3.67E+04 5.37E+18
f16 9.50E-01 7.39E-01 2.67E+06 2.70E+06 3.14E+06
f17 2.82E+03 1.42E+04 9.53E+11 9.33E+11 1.64E+12
f18 1.80E+00 3.35E+00 7.20E+03 7.20E+03 8.29E+03
f19 0.00E+00 0.00E+00 1.14E+05 1.11E+05 6.59E+12

Table 5.5: Comparison of RPSO-vm versus (lb)RPSO-vm, RPSO, PSO-vm, and PSO according
to Holm’s post-hoc multicompare test (α = 0.05)

i algorithm z p-value α/i Sig.dif?
4 (lb)RPSO-vm 7.02 2.09E-12 0.012 Yes
3 PSO 4.10 4.06E-05 0.016 Yes
2 PSO-vm 4.10 4.06E-05 0.025 Yes
1 RPSO 0.41 6.81E-01 0.050 No

A first analysis consists of studying the improvement obtained by RPSO-vm with regards
to basic PSO algorithm. Table 5.4 shows the mean errors (in 25 runs) obtained by RPSO-vm in
comparison with the ones of PSO only with restarting (RPSO), PSO only with velocity modulation
(PSO-vm), and the basic Canonical PSO. Additionally, we have included to this comparison the
standard version of PSO (SPSO 2007) consisting on the lbest PSO. This version uses a variable
random topology for selecting the best neighbor (p) for each particle [GKS+09]. The resulting
algorithm (lb)RPSO-vm incorporates both, modulation velocity and restart mechanisms in order
to obtain an as fair as possible comparison. For this specific analysis, we have only focused on
1,000 variables dimension, since it allows the most interesting analysis.

As we can see in Table 5.4, RPSO-vm obtains the higher number of best error values (15 out
of 19 in bold), and followed by RPSO. The other versions are clearly worse than the formers.
In addition, after applying Iman-Davenport test to see whether there are significant differences
between them, we obtained a test value of 166.07 with a critical value of 3.77 (with α = 0.05),
which proves that there is an evident improvement of RPSO-vm over PSO.

More precisely, Table 5.5 contains the results of a multicomparison Holm’s test where we can see
that RPSO-vm is statistically better than all PSO versions, excepting RPSO. In this case, RPSO-
vm obtained a better ranking than RPSO but without significant differences. Therefore, the main
consequence is that velocity modulation (PSO-vm) can improve the performance of basic PSO,
although it is in the case of PSO with restarting method (RPSO) where a significant improvement
is obtained. In the case of (lb)RPSO-vm, we suspect that the fact of using the same parameter
setting specifically fine-tuned for RPSO-vm (global best) could lead this version of PSO to perform
inadequately in our experiments. These preliminary results lead us to definitively use both, the
velocity modulation and the restarting method to design our RPSO-vm for large scale optimization.
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Table 5.6: Results of the Iman-Davenport’s (I.D.) test of RPSO-vm and all compared algorithms
for each dimension (α = 0.05)

Dimension I.D. value Critical value Sig. differences?
50 13.80 2.53 Yes

100 13.43 2.53 Yes
200 12.76 2.53 Yes
500 14.37 2.53 Yes

1000 30.04 2.84 Yes

Table 5.7: Comparison of DE versus RPSO-vm, CHC, and G-CMA-ES according to Holm’s mul-
ticompare test (α = 0.05)

DIM i algorithm z p− value α/i Sig.dif?
3 CHC 4.77 1.79E-06 0.016 Yes

50 2 G-CMA-ES 2.95 3.14E-03 0.025 Yes
1 RPSO-vm 1.57 1.16E-01 0.050 No
3 CHC 4.71 2.45E-06 0.016 Yes

100 2 G-CMA-ES 2.89 3.85E-03 0.025 Yes
1 RPSO-vm 1.44 1.48E-01 0.050 No
3 CHC 4.649 3.33E-06 0.016 Yes

200 2 G-CMA-ES 2.76 5.70E-03 0.025 Yes
1 RPSO-vm 1.38 1.66E-01 0.050 No
3 CHC 4.52 6.07E-06 0.016 Yes

500 2 G-CMA-ES 3.70 2.09E-04 0.025 Yes
1 RPSO-vm 1.57 1.16E-01 0.050 No

1000
2 CHC 4.62 3.77E-06 0.025 Yes
1 RPSO-vm 0.97 3.30E-01 0.050 No

5.4.2 Scalability Analysis

This section is focused on analyzing the capability of our RPSO-vm to scale with the dimension
of the search space of each function. As proposed in SOCO’10[HLM10b], the scalability study
have been made in comparison with other well-known algorithms in the state of the art. These
algorithms are a version of DE (DE/1/exp) [PSL05], CHC [Esh91], and G-CMA-ES [AH05]. The
descriptions and the parameter settings of these algorithms can be found in [HLM10a]. Therefore,
we first analyze the results of RPSO-vm dimension by dimension, and secondly, we made a brief
study from a general point of view of the scalability behavior of RPSO-vm regarding several selected
functions (f2, f9, f14, and f19) of the SOCO’10 benchmark.

An initial study with all these results consists of applying an Iman-Davenport test to see if
there exist significant differences between them for all considered dimensions. Table 5.6 shows the
results of this test, where we can effectively notice that there are statistical differences in compared
results. In fact, for almost all cases the test values (I.D. value) increase with the dimension, which
means that there are higher differences between compared algorithms in large scale (500 and 1,000)
than in small dimensions (50, 100 and 200). Hence, we can known beforehand that there is an
algorithm with poor scalability behavior, at least.

Following this general point of view, Table 5.7 shows the results of applying a post-hoc multi-
comparison Holm’s test to all mean fitness values obtained by each algorithm for each dimension.
We must notice that G-CMA-ES could not obtained any result for dimension 1,000 (Table 5.12),
hence it has not been considered for comparisons regarding the largest scale. The main observation
we can draw from Table 5.7 is that there are two algorithms: DE, and RPSO-vm that clearly show
a better average distribution than the remaining ones. In addition, these ranks are kept for all
dimensions. Concretely, DE reached the best rank and for this reason it has been considered as the
control algorithm for this statistical test. Nevertheless, our RPSO-vm is the only algorithm that
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Table 5.8: Mean Errors obtained by DE, CHC, G-CMA-ES, and RPSO-vm for dimension 50
f/Alg. DE CHC G-CMA-ES RPSO-vm
f1 0.00E+00 1.67E-11 0.00E+00 2.62E-14
f2 3.60E-01 6.19E+01 2.75E-11 7.54E-03
f3 2.89E+01 1.25E+06 7.97E-01 1.75E+03
f4 3.98E-02 7.43E+01 1.05E+02 2.30E-14
f5 0.00E+00 1.67E-03 2.96E-04 9.53E-02
f6 1.43E-13 6.15E-07 2.09E+01 1.49E-12
f7 0.00E+00 2.66E-09 1.01E-10 0.00E+00
f8 3.44E+00 2.24E+02 0.00E+00 1.06E+03
f9 2.73E+02 3.10E+02 1.66E+01 2.94E-01
f10 0.00E+00 7.30E+00 6.81E+00 0.00E+00
f11 6.23E-05 2.16E+00 3.01E+01 1.68E-02
f12 5.35E-13 9.57E-01 1.88E+02 8.58E-02
f13 2.45E+01 2.08E+06 1.97E+02 6.57E+02
f14 4.16E-08 6.17E+01 1.09E+02 6.81E-02
f15 0.00E+00 3.98E-01 9.79E-04 0.00E+00
f16 1.56E-09 2.95E-09 4.27E+02 7.88E-11
f17 7.98E-01 2.26E+04 6.89E+02 8.73E+02
f18 1.22E-04 1.58E+01 1.31E+02 5.05E-02
f19 0.00E+00 3.59E+02 4.76E+00 0.00E+00

Table 5.9: Mean Errors obtained by DE, CHC, G-CMA-ES, and RPSO-vm for dimension 100
f/Alg. DE CHC G-CMA-ES RPSO-vm
f1 0.00E+00 3.56E-11 0.00E+00 2.66E-14
f2 4.45E+00 8.58E+01 1.51E-10 1.98E-01
f3 8.01E+01 4.19E+06 3.88E+00 1.42E+03
f4 7.96E-02 2.19E+02 2.50E+02 2.61E-14
f5 0.00E+00 3.83E-03 1.58E-03 1.07E-01
f6 3.10E-13 4.10E-07 2.12E+01 4.76E-12
f7 0.00E+00 1.40E-02 4.22E-04 0.00E+00
f8 3.69E+02 1.69E+03 0.00E+00 1.09E+04
f9 5.06E+02 5.86E+02 1.02E+02 1.85E-01
f10 0.00E+00 3.30E+01 1.66E+01 0.00E+00
f11 1.28E-04 7.32E+01 1.64E+02 4.61E-01
f12 5.99E-11 1.03E+01 4.17E+02 1.60E-14
f13 6.17E+01 2.70E+06 4.21E+02 2.25E+03
f14 4.79E-02 1.66E+02 2.55E+02 1.27E-01
f15 0.00E+00 8.13E+00 6.30E-01 0.00E+00
f16 3.58E-09 2.23E+01 8.59E+02 4.87E-08
f17 1.23E+01 1.47E+05 1.51E+03 1.76E+03
f18 2.98E-04 7.00E+01 3.07E+02 1.36E-01
f19 0.00E+00 5.45E+02 2.02E+01 0.00E+00

does not show significant statistical differences (Sig.dif) with regards to DE (control), and present-
ing the lowest difference precisely in the largest dimension (1,000 variables). This is an important
indicator that confirms us the successful performance of our proposal in terms of scalability.

The following Tables 5.8, 5.9, 5.10, 5.11 and 5.12 contain the results of all the compared algo-
rithms for dimensions: 50, 100, 200, 500 and 1,000, respectively. The last column in these tables
shows the results of our RPSO-vm, indicating in bold face such values for which the mean error is
the best found for each comparison.

Dimension 50. Table 5.8 shows the mean errors (of 25 runs) obtained by DE, CHC, G-CMA-ES,
and RPSO-vm for dimension 50. In this case, DE obtained the best results in 13 functions, 7 of
them in hybrid composition functions. RPSO-vm obtained the best results in 7 functions, and
G-CMA-ES obtained the best results in 3 functions.

The Holm’s test with α = 0.05 (Table 5.7) showed that DE, the algorithm with best ranking is
statistically better than all algorithms, excepting RPSO-vm with p-value= 0.05.
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Table 5.10: Mean Errors obtained by DE, CHC, G-CMA-ES, and RPSO-vm for dimension 200
f/Alg. DE CHC G-CMA-ES RPSO-vm
f1 0.00E+00 8.34E-01 0.00E+00 2.53E-14
f2 1.92E+01 1.03E+02 1.16E-09 2.00E+00
f3 1.78E+02 2.01E+07 8.91E+01 1.03E+03
f4 1.27E-01 5.40E+02 6.48E+02 2.43E-14
f5 0.00E+00 8.76E-03 0.00E+00 1.73E-01
f6 6.54E-13 1.23E+00 2.14E+01 2.95E-12
f7 0.00E+00 2.59E-01 1.17E-01 0.00E+00
f8 5.53E+03 9.38E+03 0.00E+00 5.23E+04
f9 1.01E+03 1.19E+03 3.75E+02 1.67E+00
f10 0.00E+00 7.13E+01 4.43E+01 0.00E+00
f11 2.62E-04 3.85E+02 8.03E+02 5.66E-01
f12 9.76E-10 7.44E+01 9.06E+02 4.64E-02
f13 1.36E+02 5.75E+06 9.43E+02 1.17E+04
f14 1.38E-01 4.29E+02 6.09E+02 7.96E-02
f15 0.00E+00 2.14E+01 1.75E+00 0.00E+00
f16 7.46E-09 1.60E+02 1.92E+03 5.40E-01
f17 3.70E+01 1.75E+05 3.36E+03 2.08E+04
f18 4.73E-04 2.12E+02 6.89E+02 1.50E-01
f19 0.00E+00 2.06E+03 7.52E+02 0.00E+00

Table 5.11: Mean Errors obtained by DE, CHC, G-CMA-ES, and RPSO-vm for dimension 500
f/Alg. DE CHC G-CMA-ES RPSO-vm
f1 0.00E+00 2.84E-12 0.00E+00 2.65E-14
f2 5.35E+01 1.29E+02 3.48E-04 1.67E+01
f3 4.76E+02 1.14E+06 3.58E+02 1.13E+03
f4 3.20E-01 1.91E+03 2.10E+03 2.44E-14
f5 0.00E+00 6.98E-03 2.96E-04 2.54E-01
f6 1.65E-12 5.16E+00 2.15E+01 3.14E-12
f7 0.00E+00 1.27E-01 7.21E+153 0.00E+00
f8 6.09E+04 7.22E+04 2.36E-06 3.00E+05
f9 2.52E+03 3.00E+03 1.74E+03 4.85E+00
f10 0.00E+00 1.86E+02 1.27E+02 0.00E+00
f11 6.76E-04 1.81E+03 4.16E+03 4.88E+00
f12 7.07E-09 4.48E+02 2.58E+03 1.32E-08
f13 3.59E+02 3.22E+07 2.87E+03 1.33E+03
f14 1.35E-01 1.46E+03 1.95E+03 1.29E+00
f15 0.00E+00 6.01E+01 2.82E+262 0.00E+00
f16 2.04E-08 9.55E+02 5.45E+03 2.12E+00
f17 1.11E+02 8.40E+05 9.59E+03 5.72E+02
f18 1.22E-03 7.32E+02 2.05E+03 2.47E+00
f19 0.00E+00 1.76E+03 2.44E+06 0.00E+00

Dimension 100. In this case, in spite of reaching DE the best mean error in more functions than
RPSO-vm and G-CMA-ES (see Table 5.9), both Friedman’s and Holm’s test showed similar results
to dimension 50. That is, RPSO-vm and DE are statistically similar to themselves, although better
than CHC, and G-CMA-ES.

Dimension 200. As shown in Table 5.10, the results are quite similar to the previous ones of
dimension 100. In fact, the same algorithms (RPSO-vm, DE, and G-CMA-ES) obtained the best
mean errors practically in the same functions. The Holm’s test also confirms that DE is statisti-
cally similar to RPSO-vm (p-value= 0.05), and better than the rest of algorithms.

Dimension 500. Table 5.11 contains the mean errors of all algorithms in dimension 500. We can
see the set functions for which RPSO-vm always obtained the best mean fitness: f4, f7, f9, f10, f15,
and f19. In particular Shifted Schwefel 2.22 (f7) and its hybrids (f15 and f19) are optimized for all
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Table 5.12: Mean Errors obtained by DE, CHC, and RPSO-vm for dimension 1000
f/Alg. DE CHC RPSO-vm
f1 0.00E+00 1.36E-11 2.72E-14
f2 8.46E+01 1.44E+02 4.29E+01
f3 9.69E+02 8.75E+03 3.21E+02
f4 1.44E+00 4.76E+03 4.81E-14
f5 0.00E+00 7.02E-03 2.14E-01
f6 3.29E-12 1.38E+01 4.92E-12
f7 0.00E+00 3.52E-01 0.00E+00
f8 2.46E+05 3.11E+05 9.35E+05
f9 5.13E+03 6.11E+03 1.17E+01
f10 0.00E+00 3.83E+02 0.00E+00
f11 1.35E-03 4.82E+03 1.10E+01
f12 1.68E-08 1.05E+03 1.00E-09
f13 7.30E+02 6.66E+07 1.93E+03
f14 6.90E-01 3.62E+03 5.27E-01
f15 0.00E+00 8.37E+01 0.00E+00
f16 4.18E-08 2.32E+03 9.50E-01
f17 2.36E+02 2.04E+07 2.82E+03
f18 2.37E-03 1.72E+03 1.80E+00
f19 0.00E+00 4.20E+03 0.00E+00

dimensions. These functions are unimodal separable (f7) and unimodal non-separable (f9, f10, f15,
and 19) which could led us to think that RPSO-vm only has successful performance with unimodal
functions. Nevertheless, we can easily check that our proposal also obtained the best results for
f4 (multimodal), and for all dimensions. In addition, RPSO-vm obtained the second best mean
fitness for the remaining of hybrid composition functions (dimension 500), practically all of them
characterized as multimodal. Statistically, the Holm’s test confirms our initial hypothesis since it
showed (Table 5.7) that the results of RPSO-vm are not significantly different to the ones of DE
(p-value= 0.05), and they are statistically better than the results of the rest of algorithms.

Dimension 1000. For the largest scale, Table 5.12 shows that RPSO-vm obtained the best re-
sults for 10 out of 19 functions. As aforementioned, G-CMA-ES did not obtained any value for
dimension 1,000. Regarding dimension 500, the set of functions for which RPSO-vm obtained the
best mean fitness has been increased with f2, f3, f12, and f14, having these functions different
properties of modality and separability. As happened in all dimensions, in spite of having DE the
best average ranking, the Holm’s test (Table 5.7) showed RPSO-vm is statistically similar to DE.
In comparison with CHC, our proposal is statistically the best algorithm.

From a graphical point of view, Figure 5.1 illustrates the tendency of results of compared
algorithms and RPSO-vm for functions f2, f9, f14, and f19 through the different dimensions. We
have chosen these functions since they showed a representative behavior in terms of scalability.
Therefore, we can observe in this figure that the performance of all algorithms deteriorates in
higher dimensions. Nevertheless, this degradation is slight in almost all cases, and even nonexistent
in others, as it happened in functions f2 and f19 for algorithms RPSO-vm and DE. A different
and anomalous behavior is observed in G-CMA-ES for functions f2 and f19, where it diminishes
quickly. We suspect that the use of the covariance matrix mechanism of G-CMA-ES is unsuitable
for large dimensions due to the great amount of resources it requires [HMK03, KL07].
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Figure 5.1: Scalable results of DE, CHC, G-CMA-ES, and RPSO-vm for functions f2, f9, f14, and
f19. Y axis shows the results in logarithmic scale. X axis shows the problem dimensions

5.4.3 Computational Effort

Finally, we present in this section some remarks about the computational effort. To execute these
experiments, we have used the computers of the laboratories of the Departament of Computer
Science of the University of Málaga (Spain). Most of them are equipped with dual core processors,
1GB RAM, and Linux S.O., having into account that there are more than 180 computers, meaning
that up to 360 cores have been available. To run all the programs, we have used the Condor [TTL05]
middleware that acts as a distributed task scheduler (each task dealing with one independent run
of RPSO-vm).

In Table 5.13, we present the average running time (in seconds) in which RPSO-vm has found
the best mean error for all functions and for all dimensions. As expected, the running time increases
with the number of variables, specially in non-separable functions. Specifically, f1 (Shifted Sphere)
required the lowest time to be optimized for all dimensions, and f17 (Hybrid NS f9⊕f3) toke the
longest time. In general, hybrid composition functions required more time to reach their best value
than simple functions and the absolute values are low/practical, even for high dimensions.

In this sense, an interesting observation consists in comparing the increment of both, the
processing time and the optimum mean error found, through the different scales of the search
space. In this way, we can obtain insights about the computational effort required with regards to
the quality of solutions obtained. Figure 5.2 shows a representative case observed for function f2,
where the increment of the processing time as well as the mean error is practically linear. If we
take into account that the search space grows exponentially with the dimension [xlow , xupp]

D in all
functions, we can claim that our proposal scales successfully. Concerning the quality of solutions,
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Table 5.13: Average running time (ART) in seconds of the 25 runs of RPSO-vm for all functions
and for all dimensions

ART/D 50 100 200 500 1000
f1 7.91E-01 3.33E+00 1.36E+01 8.42E+01 3.60E+02
f2 2.72E+00 9.67E+00 4.10E+01 2.55E+02 9.37E+02
f3 6.30E+00 2.66E+01 9.85E+01 5.71E+02 2.50E+03
f4 2.82E+00 1.26E+01 5.50E+01 3.81E+02 1.52E+03
f5 2.19E+00 8.06E+00 3.82E+01 2.24E+02 8.60E+02
f6 4.82E+00 1.65E+01 7.43E+01 4.14E+02 1.76E+03
f7 2.42E+00 8.62E+00 3.58E+01 2.11E+02 8.72E+02
f8 2.27E+00 9.49E+00 3.41E+01 2.24E+02 8.02E+02
f9 9.05E+00 3.28E+01 1.32E+02 1.11E+03 3.19E+03
f10 4.14E+00 1.79E+01 6.40E+01 4.12E+02 1.74E+03
f11 9.23E+00 3.61E+01 1.43E+02 9.64E+02 3.92E+03
f12 4.17E+00 1.59E+01 6.63E+01 4.04E+02 1.33E+03
f13 7.44E+00 2.76E+01 9.97E+01 7.62E+02 3.03E+03
f14 5.91E+00 2.50E+01 9.30E+01 5.34E+02 2.20E+03
f15 2.78E+00 1.16E+01 4.43E+01 2.67E+02 8.90E+02
f16* 5.49E+00 2.20E+01 9.45E+01 6.09E+02 2.25E+03
f17* 8.48E+00 3.13E+01 1.41E+02 7.00E+02 3.24E+03
f18* 7.18E+00 3.05E+01 1.23E+02 7.47E+02 2.93E+03
f19* 4.01E+00 1.38E+01 6.15E+01 3.61E+02 1.43E+03
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Figure 5.2: Differences in times versus mean error magnitudes of f2 for each dimension. The Y
axis contains values in logarithmic scale and the X axis contains dimensions

the deterioration that the mean error suffers is higher in comparison with the processing time.
Specifically, from dimension 200 to 500, the mean error increases in 2 orders of magnitude while
the time required takes less than 1 order of magnitude. Curiously, the difference in the mean error
between 500 and 1000 dimensions is not bigger than one order of magnitude, which leads us to
suspect that our proposal performs relatively better in larger dimensions than in smaller ones.

5.5 Conclusions

In this chapter, we have incorporated both velocity modulation and restarting mechanisms to the
Particle Swarm Optimization with the aim of enhancing its scalability. Our work hypothesis was
that these two new mechanisms can help the PSO to avoid the early convergence and redirects
the particles to promising areas in the search space. The experimentation phase has been carried
out in the scope of the SOCO’10 benchmark suite to test the ability of being scalable. The results
obtained show that our proposal is scalable in all functions of the benchmark used, as well as highly
competitive with regards to other compared optimizers. In concrete, we can remark the following:
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• the new proposal, called Restarting PSO with Velocity Modulation (RPSO-vm), outperforms
the basic PSO, as well as PSO with each new mechanism separately, for all dimensions.
Additionally, the RPSO-vm algorithm with global best neighborhood topology outperforms
(lb)RPSO-vm: they two are the same algorithm but one has a global best (gbest) topology
while the other has a variable neighborhood (lbest) topology.

• RPSO-vm shows a competitive performance in terms of its scalability. In fact, it is the second
best algorithm for all dimensions and statistically similar to the best one in comparison with
reference algorithms (in SOCO’10): DE, CHC, and G-CMA-ES, which are well-known opti-
mizers traditionally used for continuous optimization and showing an excellent performance
in other benchmarks (CEC’05, CEC’08, BBOB’09, etc.).

• RPSO-vm obtained the best results for functions f4, f7, f9, f10, f15, and f19 for all the
dimensions. These functions are all shifted and they have different properties of modality,
separability and composition. For the largest dimension (1000), the set of functions in which
our algorithm obtained the best results is increased with f2, f3, f12, and f14.

• In terms of the computational effort, the running time increases with the number of variables,
specially in non-separable and hybrid composition functions. Additionally, we observed that
from dimension 200 to 500 the mean error increased in 2 orders of magnitude while the time
required takes less than one order of magnitude. The difference in the mean error between
500 and 1,000 dimensions is not bigger than one order of magnitude. This leads us to suspect
that our proposal performs relatively better in larger dimensions than in smaller ones.

In general, we can conclude that modifying the Particle Swarm Optimization algorithm, we
have developed a new version (RPSO-vm) that is able to reach a highly accurate performance even
in large scale environments. In the light of these results, we are encouraged to follow betting on
PSO based algorithms in future works.



Chapter 6

SMPSO: Speed Modulation PSO
for Multi-objective Optimization

6.1 Introduction

The relative simplicity and competitive performance of the Particle Swam Optimization [KE95]
algorithm as a single-objective optimizer have favored the use of this bio-inspired technique when
dealing with many real-word optimization problems [RSC06]. A considerable number of these
optimization problems require to optimize more than one conflicting objectives at the same time.
These trends, along with the fact that PSO is a population-based metaheuristic, have made it a
natural candidate to be extended for multi-objective optimization. Since the first proposed Multi-
Objective Particle Swarm Optimizer (MOPSO) developed by Moore and Chapman in 1999 [MC99],
more than thirty different MOPSOs have been reported in the specialized literature. Reyes and
Coello [RSC06] carried out a survey of the existing MOPSOs, providing a complete taxonomy of
such algorithms. In that work, authors considered as the main features of all existing MOPSOs
the following ones: the existence of an external archive of non-dominated solutions, the selection
strategy of non-dominated solutions as leaders for guiding the swarm, the neighborhood topology,
and the existence or not of a mutation operator.

In this chapter, we are interested in analyzing in practice six representative state-of-the-art
MOPSOs in order to provide hints about their search capabilities. Five of them were selected from
Reyes and Coello’s survey, namely: NSPSO [Li03], SigmaMOPSO [MT03], OMOPSO [RSC05],
AMOPSO [TC04], and MOPSOpd [ABEF05]. Recently, Huang et al. [HSL06] integrated a Pareto
dominance concept into the Comprehensible Learning PSO (MOCLPSO), then using its learning
strategy to make the particles have different learning exemplars for different dimensions.

With the aim of assessing the performance of these algorithms, we have used three benchmarks
of multi-objective functions covering a broad range of problems with different features (concave,
convex, disconnected, deceptive, etc.). These benchmarks include the test suites Zitzler-Deb-Thiele
(ZDT) [ZDT00], the Deb-Thiele-Laumanns-Zitzler (DTLZ) problem family [DTLZ05], and the
Walking-Fish-Group (WFG) test problems [HHBW06]. The experimental methodology we have
followed consists in computing a pre-fixed number of function evaluations and then comparing the
obtained results by considering three different quality indicators: additive unary epsilon [KTZ06],
spread [DPAM02], and hypervolume [ZT99]. The results of our study reveal that many MOPSOs
have difficulties when facing some multi frontal problems. We analyze this weakness and propose a

73
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Algorithm 7 Pseudocode of a general MOPSO

1: S ←initializeSwarm(Ss)
2: A←initializeLeadersArchive()
3: determineLeadersQuality(A)
4: while t < MAXIMUMt do
5: for each particle i in S do
6: bt ← selectLeader(At)
7: vt+1

i ←updateVelocity(ω,vt
i,x

t
i, ϕ1,p

t
i, ϕ2,b

t) //Equations 3.2 or 3.3
8: xt+1

i ←updatePosition(xt
i,v

t+1
i ) //Equation 3.1

9: xt+1
i ← mutation(xt+1

i )
10: evaluate(xt+1

i )
11: pt+1

i ←update(pt
i)

12: end for
13: At+1 ←updateLeadersArchive(At)
14: determineLeadersQuality(At+1)
15: end while

new algorithm, called SMPSO, which incorporates a velocity constraint mechanism. We will show
that SMPSO shows a promising behavior on those problems where the other algorithms fail.

The remainder of this chapter is organized as follows. Section 6.2 includes basic background
about MOPSO algorithms. In Section 6.3, we briefly review the studied approaches focusing on
their main features. Section 6.4 is devoted to the experimentation, including the parameter setting
and the methodology adopted in the statistical tests. In Section 6.5, we analyze the obtained results
regarding the three quality indicators indicated before. The results are discussed in Section 6.6,
where a new MOPSO based on a constraint velocity mechanism is introduced. Finally, Section 6.7
contains the conclusions and some possible paths for future work.

6.2 The Basic MOPSO

To apply a PSO algorithm in multi-objective optimization the previous scheme has to be modified
to cope with the fact that the solution of a problem with multiple objectives is not a single one
but a set of non-dominated solutions. Issues that have to be considered are [RSC06]:

1. How to select the set of particles to be used as leaders?

2. How to keep the non-dominated solutions found during the search?

3. How to maintain diversity in the swarm in order to avoid convergence to a single solution?

The pseudo-code of a general MOPSO is included in Algorithm 13. After initializing the swarm
(Line 1), the typical approach is to use an external archive to store the leaders, which are taken
from the non-dominated particles in the swarm. After initializing the leaders archive (Line 2),
some quality measure has to be calculated (Line 3) for all the leaders to select usually one leader
for each particle of the swarm. In the main loop of the algorithm, the flight of each particle is
performed after a leader has been selected (Lines 6-8) and, optionally, a mutation or turbulence
operator can be applied (Line 9); then, the particle is evaluated and its corresponding personal
best is updated (Lines 10-11). After each iteration, the set of leaders is updated and the quality
measure is calculated again (Lines 13-14). After the termination condition, the archive (A) is
returned as the result of the search.
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6.3 Studied Approaches

The studied approaches we have considered in this work can be classified as Pareto-based MOP-
SOs [RSC06]. The basic idea, commonly found in all these algorithms, is to select as leaders the
particles that are non-dominated with respect to the swarm. However, this leader selection scheme
can be slightly different depending on the additional information each algorithm includes on its
own mechanism (e.g., information provided by a density estimator). We next summarize the main
features of the considered MOPSOs:

• Non-dominated Sorting PSO:NSPSO [Li03] incorporates the main mechanisms of NSGA-
II [DPAM02] to a PSO algorithm. In this approach, once a particle has updated its position,
instead of comparing the new position only against the pbest position of the particle, all
the pbest positions of the swarm and all the new positions recently obtained are combined
in just one set (given a total of 2N solutions, where N is the size of the swarm). Then,
NSPSO selects the best solutions among them to conform the next swarm (by means of a
non-dominated sorting). This approach also selects the leaders randomly from the leaders set
(stored in an external archive) among the best of them, based on two different mechanisms:
a niche count and a nearest neighbor density estimator. This approach uses a mutation
operator that is applied at each iteration step only to the particle with the smallest density
estimator value.

• SigmaMOPSO: In SigmaMOPSO [MT03], a sigma value is assigned to each particle of the
swarm and of an external archive. Then, a given particle of the swarm selects as its leader to
the particle of the external archive with the closest sigma value. The use of the sigma values
makes the selection pressure of PSO even higher, which may cause premature convergence
in some cases. To avoid this, a turbulence operator is used, which is applied on the decision
variable space.

• Optimized MOPSO: The main features of OMOPSO [RSC05] include the use of the crowd-
ing distance of NSGA-II to filter out leader solutions and the combination of two mutation
operators to accelerate the convergence of the swarm. The original OMOPSO algorithm
makes use of the concept of ǫ-dominance to limit the number of solutions produced by the
algorithm. We consider here a variant discarding the use ǫ-dominance, being the leaders
archive the result of the execution of the technique.

• Another MOPSO: AMOPSO [TC04] uses the concept of Pareto dominance to determine
the flight direction of a particle. Authors adopt clustering techniques to divide the population
of particles into several swarms. This aims at providing a better distribution of solutions
in the decision variable space. Each sub-swarm has its own set of leaders (non-dominated
particles). In each sub-swarm, a PSO algorithm is executed (leaders are randomly chosen)
and, at some point, the different sub-swarms exchange information: the leaders of each
swarm are migrated to a different swarm in order to variate the selection pressure. Also, this
approach does not use an external archive since elitism in this case is an emergent process
derived from the migration of leaders.

• Pareto Dominance MOPSO: in MOPSOpd [ABEF05], authors propose methods based
exclusively on Pareto dominance for selecting leaders from an unconstrained non-dominated
external archive. Three different selection techniques are presented: one technique that ex-
plicitly promotes diversity (called Rounds by the authors), one technique that explicitly pro-
motes convergence (called Random), and finally one technique that is a weighted probabilistic
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method (called Prob) reaching a compromise between Random and Rounds. Additionally,
MOPSOpd uses a turbulence factor that is added to the position of the particles with certain
probability; we have used the same operator applied in SigmaMOPSO.

• Comprehensive Learning MOPSO: MOCLPSO [HSL06] incorporates a Pareto domi-
nance mechanism to the CLPSO algorithm for selecting leaders from non-dominated exter-
nal archive. In this approach, a crowding distance method is used to estimate the density of
the solutions just once the external archive reaches its maximum size. The distance values
of all the archive members are calculated and sorted from large to small. The first Nmax
(maximum size of archive) members are kept whereas the remaining ones are deleted from
the archive. The leaders are randomly chosen from this external archive of non-dominated
solutions. In MOCLPSO, no perturbation methods are applied to keep the diversity through
the evolution steps.

6.4 Experimentation

In this section, we detail the parameters settings we have used, as well as the methodology followed
in the experiments. The benchmarking MOPs chosen to evaluate the six MOPSOs have been the
aforementioned ZDT [ZDT00], DTLZ [DTLZ05], and WFG [HHBW06] test suites, leading to a
total number of 21 problems. The two latter families of MOPs have been used with their bi-
objective formulation. For assessing the performance of the algorithms, we have considered three
quality indicators: additive unary epsilon indicator (I1ǫ+) [KTZ06], spread (∆) [DPAM02], and
hypervolume (HV ) [ZT99]. The two first indicators measure, respectively, the convergence and the
diversity of the resulting Pareto fronts, while the last one measures both convergence and diversity.
All the algorithms have been implemented using jMetal [DNL+06], a Java-based framework for
developing metaheuristics for solving multi-objective optimization problems.

6.4.1 Parameterization

We have chosen a common subset of parameter settings which are the same to all the algorithms.
Thus, the size of the swarm and the leader archive, when applicable, is fixed to 100 particles,
and the stopping condition is always to perform 250 iterations (yielding a total of 25,000 function
evaluations). If we consider NSPSO, for example, the swarm size and the number of iterations used
in [Li03] is 200 and 100, respectively. Our approach has been to establish common settings in order
to make a fair comparison, keeping the rest of the parameters according to the papers where the
algorithms were originally described. The parameter settings are summarized in Table 6.1 (further
details are available in references).

6.4.2 Methodology

To assess the search capabilities of the algorithms, we have made 100 independent runs of each
experiment, and we have obtained the median, x̃, and interquartile range, IQR, as measures of
location (or central tendency) and statistical dispersion, respectively. Successful statistical tests
are marked with ‘+’ symbols in the last column in all the tables containing the results; conversely,
‘-’ means that no statistical differences were found in distributions (p-value > 0.05). The best
result for each problem has a gray colored background. For the sake of a better understanding of
the results, we have also used a clearer grey background to indicate the second best result.
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Table 6.1: Parameter settings
Common parameters

Swarm size 100 Particles
Iterations 250

NSPSO [Li03]
Variant CD (Crowding distance)
C1, C2 2.0
w Decreased from 1.0 to 0.4

SigmaMOPSO [MT03]
Archive size 100
C1, C2 2.0
w 0.4
Mutation newPosition = position + rand(0.0, 1.0) ∗ position
Mutation probability 0.05

OMOPSO [RSC05]
Archive size 100
C1, C2 rand(1.5, 2.0)
w rand(0.1, 0.5)
Mutation uniform + non-uniform + no mutation
Mutation probability Each mutation is applied to 1/3 of the swarm

AMOPSO [TC04]
Number of subswarms 5
C1, C2 2.0
w 0.4

MOPSOpd [ABEF05]
Archive Size 100
C1, C2 1.0
w 0.5
Mutation newPosition = position + rand(0.0, 1.0) ∗ position
Mutation probability 0.05
Selection method Rounds

MOCLPSO [HSL06]
Archive Size 100
C1, C2 N/A
w 0.9 to 0.2

Table 6.2: Median and interquartile range of the I1ǫ+ quality indicator
NSPSO SigmaMOPSO OMOPSO AMOPSO MOPSOpd MOCLPSO

Problem x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR
ZDT1 4.57e − 13.7e−1 3.07e − 22.6e−2 6.36e − 35.1e−4 2.41e − 18.0e−2 6.75e − 21.6e−2 3.74e − 18.8e−2 +

ZDT2 1.54e + 08.5e−1 1.00e + 00.0e+0 6.19e − 35.4e−4 6.33e − 18.3e−1 1.00e + 08.9e−1 6.45e − 11.4e−1 +

ZDT3 9.14e − 14.1e−1 9.75e − 18.3e−1 1.32e − 27.7e−3 7.30e − 13.5e−1 1.66e − 11.1e−1 5.97e − 12.0e−1 +

ZDT4 4.14e + 11.6e+1 8.30e + 06.8e+0 5.79e + 04.3e+0 1.21e + 17.6e+0 4.23e + 02.1e+0 1.71e + 11.3e+1 +

ZDT6 1.81e − 13.2e−1 5.91e − 31.1e−3 4.65e − 34.2e−4 1.69e − 16.0e−2 1.21e − 17.0e−2 3.38e + 03.8e−1 +

DTLZ1 2.30e + 18.0e+0 2.54e + 11.3e+1 1.92e + 11.1e+1 8.46e + 01.9e+1 1.72e + 11.1e+1 2.12e + 18.0e+0 +

DTLZ2 4.41e − 26.5e−2 1.13e − 19.1e−2 6.72e − 39.1e−4 1.25e − 13.9e−2 9.26e − 25.1e−2 3.95e − 23.8e−2 +

DTLZ3 1.04e + 26.2e+1 1.79e + 27.5e+1 8.86e + 19.5e+1 4.41e + 19.0e+1 1.23e + 26.5e+1 2.37e + 25.7e+1 +

DTLZ4 8.91e − 25.9e−2 3.00e − 14.5e−2 3.18e − 21.0e−2 2.20e − 11.1e−1 6.33e − 23.0e−2 2.56e − 28.6e−3 +

DTLZ5 3.92e − 23.6e−2 1.11e − 19.8e−2 6.62e − 38.9e−4 1.22e − 14.3e−2 9.10e − 24.0e−2 3.31e − 23.0e−2 +

DTLZ6 1.47e + 07.9e−1 1.00e + 02.9e−1 5.36e − 34.8e−4 1.75e − 19.1e−1 1.57e + 01.3e+0 4.77e + 03.2e−1 +

DTLZ7 1.33e + 01.4e+0 1.27e + 02.7e−2 7.13e − 36.8e−4 3.00e − 11.9e−1 1.65e − 11.1e−1 4.94e − 11.0e−1 +

WFG1 1.36e + 07.7e−2 1.00e + 09.3e−2 1.35e + 04.9e−2 1.53e + 03.0e−2 1.10e + 02.0e−1 1.31e + 05.1e−2 +

WFG2 1.67e − 25.5e−3 4.87e − 23.6e−2 1.04e − 21.7e−3 3.57e − 11.8e−1 7.24e − 22.1e−2 5.96e − 23.7e−2 +

WFG3 2.00e + 05.3e−4 2.00e + 04.2e−3 2.00e + 01.6e−5 2.10e + 01.2e−1 2.00e + 04.5e−5 2.12e + 02.0e−1 +

WFG4 1.09e − 11.8e−2 6.06e − 22.7e−2 5.98e − 21.5e−2 3.21e − 18.1e−2 5.57e − 21.8e−2 8.04e − 22.4e−2 +

WFG5 8.34e − 22.0e−2 6.36e − 21.2e−3 6.37e − 29.0e−4 6.24e − 13.3e−1 3.24e − 13.5e−1 2.57e − 12.2e−1 +

WFG6 1.04e − 16.6e−2 5.60e − 13.8e−1 1.79e − 22.5e−3 4.63e − 11.3e−1 3.30e − 12.6e−1 2.40e − 12.3e−1 +

WFG7 4.05e + 26.1e+3 5.75e + 21.8e+2 1.94e + 21.7e+3 3.77e + 11.5e+1 6.16e + 11.1e+1 2.44e + 13.4e+1 +

WFG8 5.24e − 19.2e−2 5.66e − 11.9e−1 5.06e − 13.4e−2 8.30e − 11.2e−1 5.39e − 12.3e−2 7.70e − 16.0e−2 +

WFG9 6.38e − 22.0e−2 2.89e − 21.7e−3 2.95e − 22.5e−3 3.25e − 12.5e−1 1.11e − 14.6e−2 1.49e − 12.1e−1 +

6.5 Computational Results

This section is devoted to evaluating and analyzing the results of the experiments. We start by
analyzing the values obtained after applying the I1ǫ+ quality indicator, which are contained in
Table 6.2. We can observe that OMOPSO clearly outperforms the rest of MOPSOs according
to this indicator, achieving the lowest (best) values in 13 out of the 21 problems composing the
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benchmark. It also obtains six second best values. The next best performing algorithms are
SigmaMOPSO, MOPSOpd, and AMOPSO, which get similar numbers of best and second best
results. Thus, we can claim that OMOPSO produces solution sets having better convergence to
the Pareto fronts in most of the benchmark problems considered in our study. All the results have
statistical significance, as it can be seen in the last column, where only ‘+ ’ symbols are seen.

The values obtained after applying the ∆ quality indicator are included in Table 6.3. We can
observe again that OMOPSO is clearly the best performing algorithm, yielding the lowest (best)
values in 16 out of the 21 problems. Considering the next algorithms according to the best and
second best indicator values, we find SigmaMOPSO, NSPSO, and MOCLPSO. AMOPSO is the
worst performer according to the ∆ indicator, not achieving any best nor second best result.

Table 6.3: Median and interquartile range of the ∆ quality indicator
NSPSO SigmaMOPSO OMOPSO AMOPSO MOPSOpd MOCLPSO

Problem x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR
ZDT1 7.19e − 11.0e−1 4.11e − 13.9e−1 1.00e − 11.4e−2 9.57e − 11.6e−1 6.03e − 11.1e−1 7.70e − 16.4e−2 +

ZDT2 9.82e − 19.4e−2 1.00e + 00.0e+0 9.45e − 21.8e−2 1.00e + 06.0e−2 1.00e + 02.8e−1 8.03e − 17.4e−2 +

ZDT3 8.17e − 19.7e−2 1.09e + 03.6e−1 7.35e − 15.2e−2 9.00e − 11.5e−1 8.59e − 16.7e−2 8.85e − 15.7e−2 +

ZDT4 9.53e − 18.0e−2 1.00e + 03.3e−3 8.78e − 15.2e−2 1.03e + 02.5e−2 1.00e + 02.4e−2 9.32e − 18.2e−2 +

ZDT6 1.39e + 06.6e−2 2.89e − 13.6e−1 8.78e − 21.2e+0 1.12e + 01.5e−1 1.20e + 02.7e−1 9.67e − 14.1e−2 +

DTLZ1 8.38e − 11.2e−1 1.14e + 01.7e−1 7.77e − 11.1e−1 1.13e + 02.6e−1 8.72e − 12.0e−1 7.90e − 17.2e−2 +

DTLZ2 6.02e − 11.5e−1 1.01e + 01.4e−1 1.81e − 12.3e−2 1.15e + 01.8e−1 1.21e + 08.6e−2 7.92e − 18.7e−2 +

DTLZ3 9.31e − 12.0e−1 1.23e + 01.6e−1 7.90e − 11.1e−1 1.09e + 04.3e−1 8.55e − 11.3e−1 7.69e − 18.5e−2 +

DTLZ4 7.17e − 11.7e−1 1.41e + 08.0e−1 6.77e − 17.9e−2 1.46e + 02.7e−1 1.10e + 09.2e−2 7.33e − 15.3e−2 +

DTLZ5 5.99e − 19.3e−2 1.00e + 01.7e−1 1.77e − 12.6e−2 1.16e + 01.9e−1 1.21e + 09.3e−2 7.89e − 18.9e−2 +

DTLZ6 8.18e − 14.0e−1 1.28e + 01.0e+0 1.18e − 11.7e−2 1.23e + 04.4e−1 8.35e − 11.5e−1 8.04e − 17.2e−2 +

DTLZ7 9.08e − 11.6e−1 7.96e − 12.4e−1 5.21e − 16.8e−3 1.02e + 02.4e−1 7.95e − 11.3e−1 8.51e − 17.0e−2 +

WFG1 1.14e + 05.5e−2 7.50e − 11.2e−1 1.17e + 06.0e−2 1.30e + 03.9e−2 1.16e + 07.8e−2 1.12e + 04.2e−2 +

WFG2 8.65e − 19.0e−2 9.61e − 18.5e−2 7.64e − 15.5e−3 9.94e − 11.9e−1 1.22e + 07.0e−2 1.11e + 05.8e−2 +

WFG3 5.00e − 12.6e−2 4.96e − 12.5e−2 3.78e − 18.7e−3 1.20e + 08.7e−2 1.19e + 01.3e−1 9.04e − 16.2e−2 +

WFG4 6.25e − 15.0e−2 5.01e − 17.7e−2 5.06e − 16.3e−2 1.14e + 01.3e−1 4.83e − 14.4e−2 6.18e − 14.9e−2 +

WFG5 3.59e − 14.5e−2 1.44e − 12.0e−2 1.44e − 12.0e−2 1.03e + 01.7e−1 1.13e + 02.3e−1 8.06e − 19.7e−2 +

WFG6 5.98e − 18.1e−2 6.34e − 12.1e−1 1.63e − 12.5e−2 1.09e + 01.7e−1 1.23e + 07.0e−2 8.32e − 17.6e−2 +

WFG7 3.71e + 15.8e+2 4.07e + 15.5e+2 1.59e + 12.1e+2 1.13e + 01.3e+1 1.31e + 07.1e+2 9.13e + 18.7e+2 +

WFG8 7.19e − 18.4e−2 9.08e − 11.7e−1 7.93e − 18.8e−2 1.02e + 01.4e−1 8.68e − 16.6e−2 7.88e − 15.3e−2 +

WFG9 5.07e − 11.3e−1 2.22e − 12.6e−2 2.24e − 12.7e−2 1.19e + 01.5e−1 7.54e − 15.2e−2 7.29e − 16.3e−2 +

After applying a quality indicator that measures convergence and another one that measures
diversity, the HV indicator should confirm the previous results. The HV values, included in
Table 6.4, show that OMOPSO generates solution sets with the highest (best) values in 15 out of
the 21 problems. Thus, we can state that according to the parameterization, quality indicators,
and benchmark problems considered in this work, OMOPSO is clearly the most salient technique
among the six considered in our study.

The results corresponding to problems ZDT4, DTLZ1, and DTLZ3 deserve additional com-
ments. We have used the ‘–’ symbol in Table 6.4 to indicate those experiments in which the HV
value is equal to 0, meaning that the solution sets obtained by the algorithms are outside the limits
of the Pareto front; when applying the HV indicator these solutions are not taken into account,
because otherwise the obtained results would be unreliable. In the case of the three aforemen-
tioned problems, none of the six algorithms is able to achieve a HV greater than 0 over the 100
independent runs. We can also see that other problems are difficult to solve by some techniques,
e.g., ZDT2 and DTLZ6. The statistical tests indicate that the results of the ∆ and HV indicators
have statistical confidence. To provide further statistical information, we show in Table 6.5 those
problems for which no statistical differences appear between OMOPSO and the rest of algorithms
considering the three quality indicators. It can be observed that statistical differences exist for
most of the pair-wise comparisons.
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Table 6.4: Median and interquartile range of the HV quality indicator
NSPSO SigmaMOPSO OMOPSO AMOPSO MOPSOpd MOCLPSO

Problem x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR x̄IQR
ZDT1 1.54e − 12.4e−1 6.54e − 18.3e−3 6.61e − 11.5e−4 3.81e − 19.3e−2 5.94e − 11.7e−2 3.28e − 14.6e−2 +

ZDT2 – – 3.28e − 12.5e−4 4.10e − 21.9e−1 0.00e + 02.6e−1 6.54e − 23.7e−2 +

ZDT3 1.12e − 11.2e−1 3.21e − 12.3e−1 5.10e − 13.8e−3 2.45e − 11.1e−1 4.38e − 17.2e−2 2.55e − 13.2e−2 +

ZDT4 – – – – – – -
ZDT6 3.09e − 11.3e−1 4.01e − 13.1e−4 4.01e − 11.5e−4 2.31e − 14.1e−2 3.50e − 15.7e−2 – +

DTLZ1 – – – – – – –
DTLZ2 1.64e − 15.9e−2 1.64e − 12.1e−2 2.10e − 14.5e−4 1.23e − 12.4e−2 1.78e − 12.5e−2 2.01e − 12.3e−3 +

DTLZ3 – – – – – – -
DTLZ4 1.37e − 15.1e−2 – 1.96e − 16.1e−3 7.62e − 29.8e−2 1.90e − 19.8e−3 1.96e − 14.0e−3 +

DTLZ5 1.71e − 13.5e−2 1.65e − 12.3e−2 2.11e − 15.4e−4 1.22e − 12.9e−2 1.77e − 12.0e−2 2.01e − 12.1e−3 +

DTLZ6 – – 2.12e − 14.4e−5 8.77e − 21.5e−1 – – +

DTLZ7 1.59e − 29.7e−2 2.18e − 11.7e−2 3.34e − 13.2e−4 2.00e − 17.1e−2 2.53e − 15.5e−2 1.01e − 11.3e−2 +

WFG1 8.98e − 28.3e−3 1.21e − 12.2e−3 1.04e − 11.0e−2 6.22e − 27.4e−3 1.69e − 17.2e−2 1.01e − 15.1e−3 +

WFG2 5.61e − 12.5e−3 5.60e − 11.7e−3 5.64e − 11.0e−4 4.68e − 13.9e−2 5.57e − 13.6e−3 5.60e − 11.8e−3 +

WFG3 4.40e − 13.3e−4 4.38e − 18.0e−4 4.42e − 15.4e−5 4.04e − 11.2e−2 4.27e − 11.8e−2 4.30e − 11.3e−2 +

WFG4 1.78e − 17.0e−3 2.00e − 11.6e−3 2.02e − 11.6e−3 1.27e − 11.2e−2 2.07e − 11.3e−3 2.00e − 12.3e−3 +

WFG5 1.96e − 12.8e−4 1.96e − 18.8e−5 1.96e − 16.3e−5 1.60e − 11.7e−2 1.68e − 15.9e−2 1.90e − 11.9e−3 +

WFG6 1.75e − 12.6e−2 1.90e − 11.9e−2 2.09e − 13.5e−4 9.88e − 22.8e−2 1.60e − 14.7e−2 2.01e − 11.9e−3 +

WFG7 2.03e + 12.7e+3 2.02e + 11.1e+3 2.09e + 11.7e+4 1.14e + 11.4e+2 9.49e + 24.2e+2 2.01e + 12.7e+3 +

WFG8 1.07e − 18.7e−3 1.33e − 14.2e−3 1.26e − 13.0e−3 6.08e − 21.9e−2 1.41e − 13.0e−3 1.33e − 11.9e−3 +

WFG9 2.24e − 16.1e−3 2.34e − 14.1e−4 2.34e − 16.6e−4 1.87e − 11.1e−2 2.29e − 14.7e−3 2.30e − 11.1e−3 +

Table 6.5: Benchmark problems for which no statistical differences were found between OMOPSO
and the rest of the algorithms

I1
ǫ+ ∆ HV

- - -
AMOPSO DTLZ3 - -

- - -
- ZDT6 -

MOCLPSO DTLZ1, DTLZ4 DTLZ1, DTLZ3 DTLZ4
- WFG8 WFG1, WFG4
ZDT4 - -

MOPSOpd DTLZ1, DTLZ3 - -
WFG3, WFG4 WFG1, WFG4 -
- - -

NSPSO DTLZ3 DTLZ4 -
WFG1, WFG8 - -
- ZDT6 -

SigmaMOPSO - - -
WFG4, WFG5, WFG9 WFG4, WFG5, WFG9 WFG5, WFG9

6.6 Discussion

The conclusion drawn from the analysis of the results in the previous section is that OMOPSO
performs the best in our study. In this section, we carry out the same experiments but using
OMOPSO and NSGA-II in order to put the results of the first one in context. Such a comparison
will allow us to know how competitive OMOPSO is. Before that, we investigate why OMOPSO
(as well as the rest of MOPSOs) is unable to solve the ZDT4, DTLZ1, and DTLZ3 problems. If
we consider ZDT4, it is a well-known problem characterized by having many local optima (it is
a multifrontal problem). We have traced the velocity of the second variable in the first particle
in OMOPSO when facing the solution of ZDT4 (the second variable takes values in the interval
[−5,+5], which provides a better illustration of the following analysis than using the first variable,
which ranges in [0, 1]). The obtained values after the 250 iterations are depicted in Figure 6.1. We
can observe that the velocity (speed) values suffer a kind of erratic behavior in some points of the
execution, alternating very high with very low values. Let us note that the limits of the second
variable in ZDT4 are [−5,+5], and the velocity takes values higher than ±20. The consequence is
that this particle is moving to its extreme values continuously, so it is not contributing to guide
the search.
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Figure 6.1: Tracing the velocity of the second variable of OMOPSO when solving ZDT4
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Figure 6.2: Tracing the velocity of the second variable of SMPSO when solving ZDT4
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To find out whether this is one of the reasons making OMOPSO unable to solve multi frontal
MOPs, we have modified it by including a velocity constraint mechanism, similar to the one
proposed in [CK02]. In addition, the accumulated velocity of each variable j (in each particle) is
also bounded by means of the following equation:

vi,j(t) =





deltaj if vi,j(t) > deltaj

−deltaj if vi,j(t) ≤ −deltaj

vi,j(t) otherwise

(6.1)

where

deltaj =
(upper limitj − lower limitj)

2
(6.2)
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This way, we can ensure an effective new position calculation. We have called the resulting
algorithm SMPSO (Speed-constrained Multi-objective PSO). In Figure 6.2 we show again the
velocity of the particle representing the second parameter of ZDT4. We can observe that the
erratic movements of the velocity have vanished, so the particle is taking values inside the bounds
of the variable and thus it is moving along different regions of the search space. To evaluate
the effect of the changes in SMPSO, we have included this algorithm in the comparison between
OMOPSO and NSGA-II. We have solved all the problems again, following the same methodology.
The parameter settings of NSGA-II are: the population size is 100 individuals, we have used SBX
and polynomial mutation [Deb01] as operators for crossover and mutation operators, respectively,
and the distribution indexes for both operators are ηc = 20 and ηm = 20, respectively. The
crossover probability is pc = 0.9 and the mutation probability is pm = 1/L, where L is the number
of decision variables.

Table 6.6: NSGA-II vs OMOPSO vs SMPSO: Median and interquartile range of I1ǫ+
NSGA-II OMOPSO SMPSO

Problem x̄IQR x̄IQR x̄IQR

ZDT1 1.37e− 23.0e−3 6.36e− 35.1e−4 5.78e− 33.8e−4 +
ZDT2 1.28e− 22.3e−3 6.19e− 35.4e−4 5.66e− 33.0e−4 +
ZDT3 8.13e− 31.9e−3 1.32e− 27.7e−3 6.09e− 31.3e−3 +
ZDT4 1.49e− 23.0e−3 5.79e + 04.3e+0 7.93e− 31.4e−3 +
ZDT6 1.47e− 22.8e−3 4.65e− 34.2e−4 4.87e− 34.8e−4 +
DTLZ1 7.13e− 31.6e−3 1.92e + 11.1e+1 3.73e− 35.4e−4 +
DTLZ2 1.11e− 22.7e−3 6.72e− 39.1e−4 5.81e− 36.0e−4 +
DTLZ3 1.04e+ 01.2e+0 8.86e + 19.5e+1 6.57e− 31.0e−2 +
DTLZ4 1.13e− 29.9e−1 3.18e− 21.0e−2 6.54e− 38.8e−4 +
DTLZ5 1.05e− 22.5e−3 6.62e− 38.9e−4 5.77e− 36.1e−4 +
DTLZ6 4.39e− 23.4e−2 5.36e− 34.8e−4 5.22e− 34.4e−4 +
DTLZ7 1.04e− 22.8e−3 7.13e− 36.8e−4 5.46e− 34.3e−4 +
WFG1 3.52e− 14.6e−1 1.35e + 04.9e−2 1.34e + 04.6e−2 +
WFG2 7.10e− 17.0e−1 1.04e− 21.7e−3 1.40e− 23.4e−3 +
WFG3 2.00e+ 05.8e−4 2.00e + 01.6e−5 2.00e + 03.9e−4 +
WFG4 3.26e− 26.7e−3 5.98e− 21.5e−2 6.46e− 26.0e−3 +
WFG5 8.41e− 28.3e−3 6.37e− 29.0e−4 6.40e− 22.0e−3 +
WFG6 4.14e− 21.6e−2 1.79e− 22.5e−3 2.56e− 23.8e−3 +
WFG7 3.47e+ 28.1e+3 1.94e + 21.7e+3 2.67e + 23.8e+3 +
WFG8 3.38e− 12.3e−1 5.06e− 13.4e−2 4.32e− 17.8e−2 +
WFG9 3.73e− 27.5e−3 2.95e− 22.5e−3 3.15e− 23.3e−3 +

In Table 6.6, we include the median and interquartile range of NSGA-II, OMOPSO, and SMPSO
corresponding to the I1ǫ+ quality indicator. We observe that SMPSO yields the best values in 11 out
of the 12 problems comprising the ZDT and DTLZ benchmarks. If we focus on the WFG problems,
the lowest (best) metric values are shared between OMOPSO (six problems) and NSGA-II (three
problems), while SMPSO obtains the second lowest values in 8 out of the 9 WFG problems. These
results indicate first, that OMOPSO is competitive when compared against NSGA-II concerning
convergence and, second, that the velocity constraint mechanism included in SMPSO improves
globally the behavior of OMOPSO considering all the benchmark problems.

The values obtained when applying the ∆ and HV indicators are included in Tables 6.7 and 6.8,
respectively. We can observe that we can practically draw the same conclusions obtained from the
I1ǫ+ indicator, i.e., the algorithms obtain the lowest values in the same problems according to
the convergence and diversity indicators. In all the experiments included in this section all the
statistical tests are significant, which actually grounds our claims. If we focus in the HV and in
those problems in which OMOPSO obtained a value of 0 (ZDT4, DTLZ1, and DTLZ3), we see that
the velocity constraint mechanism added to SMPSO allows it to successfully solve them. NSGA-II
also outperforms OMOPSO in this sense, only presenting difficulties in DTLZ3.
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Table 6.7: NSGA-II vs OMOPSO vs SMPSO: Median and interquartile range of ∆
NSGA-II OMOPSO SMPSO

Problem x̄IQR x̄IQR x̄IQR

ZDT1 3.70e− 14.2e−2 1.00e− 11.4e−2 8.66e− 21.6e−2 +
ZDT2 3.81e− 14.7e−2 9.45e− 21.8e−2 7.46e− 21.5e−2 +
ZDT3 7.47e− 11.8e−2 7.35e− 15.2e−2 7.17e− 11.7e−2 +
ZDT4 4.02e− 15.8e−2 8.78e− 15.2e−2 1.53e− 12.2e−2 +
ZDT6 3.56e− 13.6e−2 8.78e− 21.2e+0 7.28e− 11.2e+0 +
DTLZ1 4.03e− 16.1e−2 7.77e− 11.1e−1 1.14e− 11.8e−2 +
DTLZ2 3.84e− 13.8e−2 1.81e− 12.3e−2 1.59e− 12.3e−2 +
DTLZ3 9.53e− 11.6e−1 7.90e− 11.1e−1 1.98e− 13.3e−1 +
DTLZ4 3.95e− 16.4e−1 6.77e− 17.9e−2 1.70e− 12.5e−2 +
DTLZ5 3.79e− 14.0e−2 1.77e− 12.6e−2 1.58e− 12.2e−2 +
DTLZ6 8.64e− 13.0e−1 1.18e− 11.7e−2 1.14e− 12.1e−2 +
DTLZ7 6.23e− 12.5e−2 5.21e− 16.8e−3 5.20e− 12.0e−3 +
WFG1 7.18e− 15.4e−2 1.17e + 06.0e−2 1.12e + 05.0e−2 +
WFG2 7.93e− 11.7e−2 7.64e− 15.5e−3 8.26e− 13.5e−2 +
WFG3 6.12e− 13.6e−2 3.78e− 18.7e−3 3.84e− 16.4e−3 +
WFG4 3.79e− 13.9e−2 5.06e− 16.3e−2 5.51e− 17.0e−2 +
WFG5 4.13e− 15.1e−2 1.44e− 12.0e−2 1.50e− 12.8e−2 +
WFG7 3.79e+ 14.6e+2 1.59e + 12.1e+2 2.44e + 13.1e+2 +
WFG6 3.90e− 14.2e−2 1.63e− 12.5e−2 2.47e− 14.1e−2 +
WFG8 6.45e− 15.5e−2 7.93e− 18.8e−2 8.08e− 15.4e−2 +
WFG9 3.96e− 14.1e−2 2.24e− 12.7e−2 2.46e− 12.8e−2 +

Table 6.8: NSGA-II vs OMOPSO vs SMPSO: Median and interquartile range of HV
NSGA-II OMOPSO SMPSO

Problem x̄IQR x̄IQR x̄IQR

ZDT1 6.59e− 14.4e−4 6.61e− 11.5e−4 6.62e− 11.5e−4 +
ZDT2 3.26e− 14.3e−4 3.28e− 12.5e−4 3.28e− 11.1e−4 +
ZDT3 5.15e− 12.3e−4 5.10e− 13.8e−3 5.15e− 15.1e−4 +
ZDT4 6.56e− 14.5e−3 – 6.61e− 13.8e−4 +
ZDT6 3.88e− 12.3e−3 4.01e− 11.5e−4 4.01e− 11.0e−4 +
DTLZ1 4.88e− 15.5e−3 – 4.94e− 13.4e−4 +
DTLZ2 2.11e− 13.1e−4 2.10e− 14.5e−4 2.12e− 12.3e−4 +
DTLZ3 – – 2.12e− 12.8e−3 +
DTLZ4 2.09e− 12.1e−1 1.96e− 16.1e−3 2.09e− 13.3e−4 +
DTLZ5 2.11e− 13.5e−4 2.11e− 15.4e−4 2.12e− 12.1e−4 +
DTLZ6 1.75e− 13.6e−2 2.12e− 14.4e−5 2.12e− 14.8e−5 +
DTLZ7 3.33e− 12.1e−4 3.34e− 13.2e−4 3.34e− 17.3e−5 +
WFG1 5.23e− 11.3e−1 1.04e− 11.0e−2 9.70e− 25.3e−3 +
WFG2 5.61e− 12.8e−3 5.64e− 11.0e−4 5.62e− 15.7e−4 +
WFG3 4.41e− 13.2e−4 4.42e− 15.4e−5 4.41e− 11.1e−4 +
WFG4 2.17e− 14.9e−4 2.02e− 11.6e−3 1.96e− 12.0e−3 +
WFG5 1.95e− 13.6e−4 1.96e− 16.3e−5 1.96e− 15.8e−5 +
WFG6 2.03e− 19.0e−3 2.09e− 13.5e−4 2.05e− 11.1e−3 +
WFG7 2.09e+ 13.3e+4 2.09e + 11.7e+4 2.06e+ 18.2e+4 +
WFG8 1.47e− 12.1e−3 1.26e− 13.0e−3 1.40e− 11.9e−3 +
WFG9 2.37e− 11.7e−3 2.34e− 16.6e−4 2.33e− 14.1e−4 +

Table 6.9 contains those problems from which no statistical differences exist considering the
three algorithms and the three quality indicators. The results of OMOPSO against NSGA-II are
significant in all the problems but DTLZ3 with respect to the ∆ indicator. Concerning SMPSO,
there a few cases where the results are not statistically different, but they do not alter the conclu-
sions drawn before.

We can summarize this section by stating that OMOPSO, the most salient of the six MOPSOs
studied in this work, is a competitive algorithm when compared with NSGA-II, and we have shown
that its search capabilities can be improved by including a velocity constraint mechanism. However,
although SMPSO outperforms both NSGA-II and OMOPSO in the ZDT and DTLZ problems, it
does not achieve the best result in the WFG benchmark. This indicates that more research has
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Table 6.9: Behcnmark problems for which no statistical differences were found among NSGA-II,
OMOPSO, and SMPSO

Quality Indicator Algorithm OMOPSO SMPSO

I1
ǫ+

NSGA-II
N/A

WFG3, WFG8
OMOPSO ZDT6, DTLZ6, WFG1, WFG4

∆
NSGA-II DTLZ3 WFG2
OMOPSO N/A ZDT6, DTLZ6

HV
NSGA-II

N/A
ZDT6

OMOPSO DTLZ6, DTLZ7, WFG8

to be done. It is also necessary to consider a broader set of problems as well as studying in more
depth the effect of modulating the speed in a MOPSO.

6.7 Conclusions

We have evaluated six MOPSO algorithms over a set of three well-known benchmark problems
by using three different quality indicators. For each experiment, 100 independent runs have been
carried out, and statistical tests have been applied to know more about the confidence of the
obtained results. In the context of the problems analyzed, the experimentation methodology, and
the parameter settings used, we can state that OMOPSO is clearly the most salient of the six
compared algorithms. The results have also shown that all the algorithms are unable to find
accurate Pareto fronts for three multi frontal problems. We have studied this issue and we have
proposed the use of a velocity constraint mechanism to enhance the search capability in order
to solve these problems. The resulting algorithm, SMPSO, shows significant improvements when
compared with respect to OMOPSO and NSGA-II. As part of our future work, we plan to study
the convergence speed of MOPSO algorithms in order to determine whether they are faster than
other multi-objective evolutionary algorithms in reaching the Pareto front of a problem.
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Chapter 7

PSO6: Quasi-optimally Informed
PSO

7.1 Introduction

In this chapter, we are now interested in analyzing the internal behavior of particle swarm op-
timization from the point of view of the set of informant particles that take part in its learning
optimization procedure. In contrast to most studies in which only the results are researched, we
here try to see what is happening inside the algorithm itself, why it works and how is the infor-
mation in the informants of the velocity equation being actually used. After this understanding
we will go for a proposal of a new PSO algorithm that outperforms the present state of the art in
continuous benchmarking. As the starting point, we have based on the first analysis in the study
presented in [CK02], where Clerc’s constriction coefficient χ is proposed to be used in velocity
update calculation instead of inertia weight, as shown in Equation 7.1.

vt+1
i ← χ

(
vt
i + U t[0, ϕ1] · (p

t
i − xt

i) + U t[0, ϕ2] · (b
t
i − xt

i)
)

(7.1)

χ =
2

|2− ϕ−
√
ϕ2 − 4ϕ|

, with ϕ =
∑

i

ϕi, and ϕ > 4 (7.2)

Constriction coefficient χ is calculated, by means of Equation 7.2, from the two acceleration
coefficients ϕ1 and ϕ2, being the sum of these two coefficients what determines the χ to use.
Usually, ϕ1 = ϕ2 = 2.05, giving as results ϕ = 4.1, and χ = 0.7298 [ES00, Tre03]. As stated by
Mendes et all. [MKN04, MMWP05], this fact implies that the particle’s velocity can be adjusted by
any number of informant terms, as long as acceleration coefficients sum to an appropriate value,
since important information given by other neighbors about the search space may be neglected
through overemphasis on the single best neighbor. With this assumption, Mendes et all. [MKN04]
proposed the Fully Informed Particle Swarm (FIPS), in which a particle uses information from all
its topological neighbors. In FIPS, the value ϕ, that is, the sum of the acceleration coefficients,
is equally distributed among all the neighbors of a particle. Therefore, for a given particle i with
position xi, ϕ is broken up in several smaller coefficients ϕj = ϕ/|Ni|, ∀j ∈ Ni. Then, the velocity
is updated as follows:
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vt+1
i ← χ


vt

i +
∑

j∈Ni

U t [0, ϕj ] · (p
t
j − xt

i)


 , (7.3)

where Ni is the set of neighbors of the particle i, and following the neighborhood a given
topology. Figure 7.1 illustrates the topologies used by Mendes et al. [MKN04] as the ones with
most successful performances in a previous work [KM02]. These topologies are: All, Ring, Square,
Four-Clusters, and Pyramid. Their results show that the Square topology (with 4 informants)
outperforms the other ones. Indeed, the fact of defining these neighborhoods in the swarm makes
the particles to be influenced only by a certain number of neighbors, and connected with static
links in the graph. Once again, important information may be disregarded through overemphasis,
in this case, on the structured sets of neighbors. The number of informants seems to play also an
important role, but with no clue on how many of them is the best choice, or if even key issue for
a higher performance is the topology itself or the fact that only a few informants are used.

Figure 7.1: Topologies used by Mendes et al. [MKN04]. Each particle has a number of fixed
neighbors in the swarm (All=N-1; Pyramid=3,5,6; Four-Clusters=4,5; Square=4; Ring=2)

All this motivated us to generalize the number of neighbors that influence particles, as well as
the different configurations of topologies, in order to discover whether there exists a quasi-optimal
number of informants that take part in the calculation of the velocity vector for a particular
problem. Then, our initial hypothesis is that: certain numbers (sets) of informant neighbors
may provide new essential information about the search process, hence leading the
PSO to perform more accurately than existing versions of this algorithm, for a number
of well-known benchmark problems in continuous optimization.

With the aim of researching in this line, we have designed in this work a generalized version of
PSO that follows the information scheme of FIPS (with Clerc’s constriction coefficient), but having
as a free variable the number of informants in the calculation of the velocity vector. To evaluate our
PSO with all possible configurations we have followed the experimental framework (with 25 problem
functions) proposed in the Special Session of Continuous Optimization of CEC’05 [SHL+05]. The
performed analysis and comparisons (against Standard PSO and FIPS versions) will help us to
claim if there are informant sets other than 2 and N that yield a more efficient PSO.

The remainder of this chapter is organized as follows. Next section presents the “Quasi-
optimally Informed” version of PSO worked here. Section 7.3 describes the experimentation pro-
cedure and the parameter settings. In Section 7.4, experimental results are reported with analysis
and discussions. After a series of initial considerations, Section 7.5 is devoted to conduct a through
analysis from the point of view of the evolvability. Section 7.6 presents our proposal consisting on
a hybrid PSO with quasy-optimal number of informants and with local search procedure. Finally,
concluding remarks and future work are given in Section 7.7.
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7.2 The Quest for an Optimal Number of Informants

As previously commented, the possibility of adjusting the particle’s velocity by an arbitrary number
of terms enables us to generalize the number (k) of neighbors, from 1 to Ss (being Ss the swarm
size). Therefore, a number Ss of different versions of PSO can be generated (selecting k particles
of the swarm without replacement), each one of them with neighborhoods containing k particles.
Obviously, if k = Ss the resultant version is the FIPS algorithm with neighborhood “ALL”, as
illustrated in Figure 7.1.

Nevertheless, since providing each k neighborhood with structured topologies is impracticable
due to the great number of graph combinations, we have opted in this work to simply select
k random (uniform) informants of the swarm (S). This way, for each particle i, and at each
time step t, a different neighborhood (N t

i ) with k elements is generated, and hence, the number
of informants can be analyzed with independence of any structured topology. Formally, we can
represent a given neighborhood as follows:

N t
i = {n1, . . . , nk} | N

t
i ⊂ St, ∀nj , nh ∈ N

t
i , nh 6= nj 6= i (7.4)

Following this scheme, our new PSOk performs as formulated in Equation 7.3, and using sets
of k random (uniform) informant particles as neighborhoods. Then, we can evaluate all the PSOk
versions (with k : 1 . . . Ss) in order to discover whether an optimal value, or range of values,
exist that allows to improve over the standard PSO and avoid the overhead of using topologies or
computing contributions from all particles in the swarm.

Algorithm 8 Pseudocode of PSOk

1: ϕj ← ϕ/k
2: S ←initializeSwarm(Ss) /* Swarm S0 with Ss number of particles */
3: while t < MAXIMUMt do
4: for each particle i of the swarm S do
5: N t

i ← generate neighborhood(k, i, St) //Equation 7.4
6: vt+1

i ← update velocity(vt
i ,x

t
i, ϕj ,N

t
i ) //Equation 7.3

7: xt+1
i ← update possiton(xt

i,v
t+1
i ) //Equation 3.1

8: pt+1
i ← update local best(pt

i,x
t+1
i )

9: end for
10: end while

The pseudocode of PSOk is introduced in Algorithm 8. After swarm initialization and ϕj value
calculation (lines 1 to 3), the optimization process is repeated until reaching the stop condition. In
this, at each iteration and for each particle a new neighborhood is randomly (uniformly) generated
by fulfilling conditions of Equation 7.4 (line 6). Then, particle’s velocity, current position, and
local best position are updated (lines 7 to 9). Finally, the best so far particle position is returned
as output.

7.3 Experimental Setup

In this section, we present an initial experimental methodology and statistical procedure applied to
evaluate the different versions of PSOk and to compare them. We have followed the experimental
framework presented in the Special Session on Real-Parameter Optimization at CEC’05 [SHL+05].
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Table 7.1: Parameter setting used in PSOk
Description Parameter Value
Swarm size Ss 30
Acceleration coefficient ϕ 4.1
Constriction coefficient χ 0.7298

We have implemented our PSOk using the MALLBA library [ALGN+07] in C++, a framework
of metaheuristics. Following the specifications proposed in CEC’05 experimental procedure, we
have performed 25 independent runs of PSOk for each test function and for each k ∈ {1, . . . , Ss}
neighborhood. We use this standard benchmark to avoid biasing the results to concrete functions,
and to have a high number of test problems that endorse our claims. For simplicity, the study has
been made with dimension D = 30 (number of continuous variables), although further analyses
with different problem dimensions are also included in sections 7.4.5 and 7.6. In the results, we
are reporting the Maximum, the Median, the Minimum, and the Mean error of the best solutions
found in the 25 independent runs. For a solution x, the error measure is defined as: f(x) − f∗,
where f∗ is the optimum fitness of the function. The maximum number of fitness evaluations has
been set to 10, 000×D, which constitutes the stop condition.

To analyze the results, we have used non-parametric statistical tests, since several times the
distributions of results did not follow the conditions of normality and homoskedasticity [GMLH09].
Therefore, the Median error (and not the Mean error), out of 25 independent runs, has been used
for analysis and comparisons. In particular, we have considered the application of the Friedman’s
ranking test, and use the Holm’s multicompare test as post-hoc procedure [She07].

The test suite of the CEC’05 benchmark is composed by 25 functions with different fea-
tures [SHL+05]: unimodal, multimodal, separable, non-separable, shifted, rotated, and hybrid
composed. Functions f1 to f5 are unimodal, functions f6 to f12 are basic multimodal, functions
f13 and f14 are expanded, and functions f15 to f25 are composed by several basic functions. This
way, our new proposals are evaluated under quite different conditions of modality, separability, and
composition. Table 3.2 in Chapter 3 shows the function names, shape characterizations, bounds,
and optimum values.

The parameter setting applied to PSOk (in Table 7.1) follows the specification of the Standard
PSO in [PCG11]. The swarm size has been set to 30 particles in order to simplify the experi-
mentation procedure due to space constraints. Nevertheless, as done with the problem dimension,
additional experiments concerning different swarm sizes will be also provided in Section 7.4.4.

7.4 Analysis and Discussion

In this section, we present an analysis concerning the influence of the different neighborhood sizes
(k) in PSOk. First, we will present a clear range for the informant number to be used, later
we evaluate them against standard algorithms in the literature. Additional analyses relating the
computational effort, the swarm size, and the problem dimension are also performed in this section.

7.4.1 Impact of the Number of Informants

First, we focus on the different number of informants constituting all possible combinations of
neighborhoods in PSOk. Then, we show here the broad impact of this study aimed at discover the
most promising values of k, with their possible implications in further studies about the PSO.



CHAPTER 7. PSO6: QUASI-OPTIMALLY INFORMED PSO 89

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0  2  4  6  8  10 12 14 16 18 20 22 24 26 28 30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f1

Maximum
Minimum

Median
Mean

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0  2  4  6  8  10 12 14 16 18 20 22 24 26 28 30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f2

Maximum
Minimum

Median
Mean

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 4.5e+09

 5e+09

 0  2  4  6  8  10 12 14 16 18 20 22 24 26 28 30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f3

Maximum
Minimum

Median
Mean

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 0  2  4  6  8  10 12 14 16 18 20 22 24 26 28 30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f4

Maximum
Minimum

Median
Mean

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f5

Maximum
Minimum

Median
Mean

 0

 1e+10

 2e+10

 3e+10

 4e+10

 5e+10

 6e+10

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f6

Maximum
Minimum

Median
Mean

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f7

Maximum
Minimum

Median
Mean

 20.8

 20.82

 20.84

 20.86

 20.88

 20.9

 20.92

 20.94

 20.96

 20.98

 21

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f8

Maximum
Minimum

Median
Mean

 0

 100

 200

 300

 400

 500

 600

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f9

Maximum
Minimum

Median
Mean

 0

 200

 400

 600

 800

 1000

 1200

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f10

Maximum
Minimum

Median
Mean

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f11

Maximum
Minimum

Median
Mean

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 0  2  4  6  8  10 12 14 16 18 20 22 24 26 28 30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f12

Maximum
Minimum

Median
Mean

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0  2  4  6  8  10 12 14 16 18 20 22 24 26 28 30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f13

Maximum
Minimum

Median
Mean

 9.5
 10

 10.5
 11

 11.5
 12

 12.5
 13

 13.5
 14

 14.5
 15

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f14

Maximum
Minimum

Median
Mean

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f15

Maximum
Minimum

Median
Mean

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f16

Maximum
Minimum

Median
Mean

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f17

Maximum
Minimum

Median
Mean

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f18

Maximum
Minimum

Median
Mean

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f19

Maximum
Minimum

Median
Mean

 800

 850

 900

 950

 1000

 1050

 1100

 1150

 1200

 1250

 1300

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f20

Maximum
Minimum

Median
Mean

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f21

Maximum
Minimum

Median
Mean

 500

 1000

 1500

 2000

 2500

 3000

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f22

Maximum
Minimum

Median
Mean

 500

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f23

Maximum
Minimum

Median
Mean

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f24

Maximum
Minimum

Median
Mean

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

E
rr

o
r 

V
a
lu

e
s

Number of Informants (K)

PSOk’s Performances for f25

Maximum
Minimum

Median
Mean

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0  2  4  6  8  10  12  14  16  18  20  22  24  26  28  30

N
u
m

b
e
r 

o
f 
H

it
s

Number of Informants (K)

PSOk’s Best Performances Histogram

Hits
Hits

Figure 7.2: Each plot contains the performance (Maximum, Median, Minimum, and Mean error
values out of 25 independent runs) of the different PSOk versions for the 30 possible values of
k, and for all CEC’05 functions. The graph in the bottom-right figure contains the frequency
histogram of best performance (number of Hits)
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Since in this experimentation we have concentrated on a swarm size with 30 particles (later,
we will analyze the influence of different swarm sizes), the number of PSOk’s versions is 30, from
PSO1 to PSO29, plus PSO30 represented by the so called FIPS-All. Therefore, we have undergone
the evaluation of each version PSOk with the benchmark of functions CEC’05. Summing up, 25
independent runs for each algorithm version and for each function have been performed, resulting
in a total number of 25× 25× 30 = 18, 750 experiments. The results are plotted in Figure 7.2, and
several observations can be made from it:

• A number of 6 informants in the neighborhood makes the algorithm to perform with success
in practically all functions. This is quite interesting since we can then propose the version
PSO6 as the most promising one, and study its main features with regards to other parameters
(swarm size, ϕ) and versus other algorithms (Standard PSOs, FIPS, etc.) in the next sections.

• For almost all functions, the interval between 5 and 10 informants concentrates most of the
successful runs. In this sense, the plot at bottom-right in Figure 7.2 shows the histogram con-
cerning the frequency in which each PSOk obtained the best results in the studied functions.
This leads us to suspect that less than 5 informants is a deficient value of k not really taking
particles out of the found local optima during the evolution, while more than 10 informants
is redundant.

• In this sense, a number of 8 informants is also appropriate showing good performances in
efficacy, although it is costly compared to PSO6. A new research question then comes to
scene: could we create still better PSO’s by using a range of informants during the search
instead of betting for just one single constant value? A good hypothesis is that combining 6
and 8 informants in neighborhoods could be a source of new competitive algorithms.

• Another interesting observation concerns the behavior of all PSOk’s versions in certain sets
of functions that show similar curves of performance. Thus, functions f1 to f5, unimodal
ones, show accurate performances from k = 5 in advance. Rastrigin’s functions f9 and f10
draw quite similar curves, reaching their best performances with k = 7. Hybrid composed
functions, from f15 to f25, show also high performance for k = 6.

• Curiously, biased functions to the same optimum f∗ share similar curve shapes of PSOk’s
performances. For example, functions f1 to f4, with f∗ = −450, functions f9 and f10, with
bias to −330, functions f15, f16, and f17 which are biased to 120, functions f18, f19, and f20
with f∗ = 10, functions f21, f22, and f23 with f∗ = 360, and specially functions f24 and
f25 biased to 260, they all show close curve shapes in Figure 7.2. An intriguing question
is whether the CEC’05 benchmark is having an unknown feature in the induced landscapes
that makes a given kind of PSO to perform better than others. If we could find such feature
in the landscape domain we could create good algorithms from the start for these and other
problems.

7.4.2 Performance Comparisons

We compare here the best PSOk version (PSO6) against the Standard PSO and other successful
versions of FIPS with the aim of studying how well informed our proposal is.

Additionally, we have developed two simple combinations of PSOks with neighborhoods of 6
and 8 informants, namely PSO-U[6,8] and PSO-HE{6,8}. The former randomly (uniform) chooses
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Table 7.2: Median error values for the 6 compared algorithms and for all the CEC’05 functions
Alg./Func. Standard PSO 2007 FIPS-ALL FIPS-Usquare PSO6 PSO-U[6,8] PSO-HE{6,8}
f1 5.68E-14 4.12E+04 0.00E+00 0.00E+00 0.00E+00 0.00E+00
f2 5.08E+00 5.83E+04 3.38E-09 3.41E-13 1.54E+02 2.89E-05
f3 4.28E+07 5.39E+08 6.36E+05 2.06E+06 1.14E+06 3.02E+06
f4 5.05E+03 7.46E+04 1.50E+04 6.30E-03 4.03E+03 1.33E+00
f5 2.89E+03 3.09E+04 3.34E+03 1.25E+03 2.42E+03 1.21E+03
f6 1.66E+01 1.22E+10 1.62E+01 1.62E+01 2.70E+01 2.19E+01
f7 1.23E-02 3.33E+02 9.86E-03 5.68E-14 7.76E-03 5.68E-14
f8 2.09E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01
f9 2.39E+01 2.73E+02 1.69E+01 1.51E+02 1.49E+01 1.09E+01
f10 1.80E+02 4.82E+02 2.79E+01 1.60E+02 1.44E+02 1.51E+02
f11 3.78E+01 3.45E+01 3.89E+01 3.97E+01 3.99E+01 3.98E+01
f12 2.88E+05 7.78E+05 2.12E+03 7.78E+05 4.61E+03 7.40E+05
f13 1.19E+01 6.67E+01 2.99E+00 1.37E+01 3.79E+00 1.19E+01
f14 1.40E+01 1.39E+01 1.28E+01 1.36E+01 1.16E+01 1.34E+01
f15 5.58E+02 9.46E+02 2.39E+02 3.57E+02 3.16E+02 3.06E+02
f16 2.12E+02 8.22E+02 4.88E+01 1.87E+02 1.69E+02 1.75E+02
f17 2.51E+02 1.19E+03 7.24E+01 2.01E+02 1.88E+02 1.90E+02
f18 8.30E+02 9.22E+02 8.31E+02 8.23E+02 8.42E+02 8.22E+02
f19 8.30E+02 9.33E+02 8.31E+02 8.22E+02 8.41E+02 8.22E+02
f20 8.30E+02 9.22E+02 8.30E+02 8.23E+02 8.41E+02 8.23E+02
f21 8.00E+02 1.32E+03 8.63E+02 8.58E+02 6.80E+02 8.58E+02
f22 5.23E+02 1.39E+03 5.51E+02 5.12E+02 5.74E+02 5.11E+02
f23 8.67E+02 1.34E+03 8.70E+02 8.66E+02 5.54E+02 8.66E+02
f24 2.16E+02 1.42E+03 2.21E+02 2.12E+02 2.30E+02 2.12E+02
f25 2.16E+02 1.44E+03 2.21E+02 2.12E+02 2.31E+02 2.12E+02
Hits 1 1 9 9 4 10

a value in {6, 7, 8} as the number of informants to be used in every step of the optimization
process. The later version, PSO-HE{6,8}, performs the first half of the optimization process with
6 informants, and the remaining second half with 8 (Half Evolution, HE).

Table 7.2 shows the resulted median errors of compared PSOk versions for all CEC’05 functions.
In addition, Standard PSO 2007, FIPS-ALL, and FIPS-USquare algorithms are also compared. We
have added the FIPS-USquare (with informants in a square neighborhood) to this comparison since
it was the version of FIPS that reported the best results in terms of performance in Mendes et
al. [MKN04]. In this table, the best resulted median errors are marked in bold, and the last row
summarizes the number of best results (Hits) obtained by each algorithm. As clearly observable,
PSO-HE{6,8} obtains the higher number of Hits (10 out of 25), followed by PSO6 and FIPS-
USquare with 9. In the case of PSO-U[6,8], a limited number of Hits of 4 leads us to suspect that
the random combination of neighborhood sizes in the interval [6,8] does not make the most of these
values. In general, we can also notice that all the algorithms obtain the best median errors for one
function, at least, so even the Standard PSO 2007 in f8 and the FIPS-ALL in f11 report the best
median error.

Statistically, Table 7.3 contains the results of an Average Rankings Friedman’s test [She07]
applied to the median results1 of Table 7.2. We can see that PSO-HE{6,8} is the best ranked
algorithm (with 2.58), followed by PSO6, and FIPS-Usquare. In contrast, FIPS-ALL is the worst
ranked algorithm according to this test. This means that the complete scheme of information
adopted in FIPS-ALL could damage the generation of new particles by incorporating noise and
redundant information to them. In this sense, the FIPS-ALL shows even worse ranking than the
Standard PSO 2007, whose set of informants (SI) is included in the set of the ALL topology,
that is, SI ⊂ ALL. More precisely, in the same table, the adjusted p-values of a multicomparison

1Friedman statistic considering reduction performance (distributed according to chi-square with 5 degrees of
freedom: 45.93714285714339).
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Table 7.3: Average Friedman’s Rankings with Holm’s correction (α = 0.05) of resulted median
errors for CEC’05 functions

Algorithm Rank Holm’sp
PSO-HE{6,8} 2.58 -
PSO6 2.86 5.96E-01
FIPS-Usquare 2.88 5.70E-01
PSO-U[6,8] 3.26 1.98E-01
Standard PSO 2007 3.76 1.23E-02
FIPS-ALL 5.66 5.86E-09

Holm’s test [She07] on the median errors are also shown. In this, the best ranked technique in
the Friedman test, PSO-HE{6,8} is compared against all other algorithms. The Holm’s procedure
rejects those hypotheses of equality of distributions that have a p-value≤0.05. Then, we can
state that, for the tackled benchmark of functions (CEC’05), and according to this test, PSO-
HE{6,8} is statistically better than Standard PSO 2007 (p-value=1.23E-02) and than FIPS-ALL
(p-value=5.86E-09) algorithms.
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Figure 7.3: Mean running time (seconds) in which all PSOk versions have found the best mean
error for all functions. The mean running time used by the rest of algorithms is also plotted

7.4.3 Computational Effort

We present in this section some remarks about the computational effort. To execute the exper-
iments, we have used the computers of the laboratories of the Department of Computer Science
of the University of Málaga (Spain). Most of them are equipped with modern dual core proces-
sors, 1GB RAM, and Linux S.O., having into account that there are more than 200 computers,
that means that up to 400 cores have been available. To run all the programs, we have used the
Condor [TTL05] middleware that acts as a distributed task scheduler (each task dealing with one
independent run of PSOk).

Figure 7.3 plots the mean running time (seconds) in which all the versions of PSOk have found
the best mean error for all functions. The mean running times used by PSO-U[6,8], PSO-HE{6,8},
Standard PSO 2007, FIPS-ALL, and FIPS-USquare algorithms are also plotted. As expected, the
running time increases with the number of informants in PSOk, although it seems to stabilize from
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Figure 7.4: Influence of the different swarm sizes in PSOk. The median fitness values are plotted
for swarm sizes with 10, 30, 50, and 100

PSO15 to PSO30 (FIPS-ALL). We have to mention that this last version (PSO30) does not use
the random selection of informants, since all particles in the swarm are involved in the velocity
calculation. This led us to suspect that the time the random selection of informants spends is not
significant with regards to the time of calculating the new velocity vector (information time).

We can also observe in this figure that the Standard PSO 2007 required the shortest running
time (excepting PSO1 and PSO2), since only two informants are involved in the velocity calculation:
the personal (p) and the global best (b) positions. Almost all the remaining compared algorithms
required similar running times, between 600 and 900 seconds, since they used a close number of
informants (from 4 to 8) in their operations. Obviously, the algorithm using the higher number of
informants, PSO30 (FIPS-ALL), required the longest running time.

7.4.4 Influence of the Swarm Size

Another interesting feature of PSOk that we also analyze here concerns the influence that the
swarm size experts on the optimal number of informants k in the neighborhood. In this sense,
we have carried out a series of additional experiments in which, four configurations of swarm sizes
(with 10, 30, 50, and 100 particles) have been set in the different PSOk algorithms for a number
of neighborhoods (k). Specifically, we have evaluated from PSO1 to PSO10, PSO30, PSO50, and
PSO100 versions, each one of them with the four possible configurations of swarm size.

Figure 7.4 shows the plot of the median error values resulted from the experiments with different
sizes of swarm, for function f10 (of CEC’05). We have selected this function since it shows a
representative behavior similar to the ones obtained on the remaining functions. We can effectively
observe that all the best median errors are obtained by PSOk versions with neighborhoods included
in the range of k ∈ [5, 9]. Therefore, with independence of the number of particles in the swarm,
the empirical optimal number of informants required is included in this interval, and even for
larger swarm sizes (with 100 particles) the performance of PSOk is enhanced using those small
neighborhoods.

7.4.5 Influence of the Problem Dimension

Similar to the previous analysis, the potential influence that scaling to larger problem dimensions
may have on the selection of the neighborhood size (in PSOk) is studied in this section. In this
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case, the experiments are focused on the resolution of large scale problems, as the ones found in
the context of the Special Session CEC’08 [TYS+07], CEC’10 [TLS+10] and SOCO’10 [HLM10b]
(the stop condition is 5, 000 ·D fitness evaluations). In concrete, we have worked with the Shifted
Ackley’s function (f6 in CEC’08, SOCO’10 and f3 in CEC’10) with dimensions D = 30, 50, 100,
and 500 variables. The swarm size was set to 30 particles as in initial experiments, and our goal is
to see how sensible is PSOk to problem size.

Figure 7.5 plots the median errors resulted for all PSOk configurations. Once again, the in-
formed PSOk with neighborhood sizes close to 6 informant particles show the best performance
for almost all problem dimensions. Only when dealing with 50 variables, PSOk with 4 and 5
informants obtain the best median errors values, also close to PSO6. Therefore, as expected, in-
creasing the number of variables in the problem dimension does not seem to variate the behavior
of the PSOk versions. In fact, for the Shifted Ackley’s function, the curve shapes representing each
problem dimension follow similar patterns to practically all plots in Figure 7.2.

7.5 Evolvability Analysis

In this section, we go one step beyond in this research line by analyzing the internal behavior
of PSO from the point of view of the evolvability. Our main motivation is to find evidences of
why certain unstructured neighborhoods, with 6±2 informant particles, perform better than other
neighborhood formulations.

With this aim, we have computed both, fitness and distance to optimum traces to calculate
evolvability measures of PSOk with different combinations of informants. We have followed the
experimentation framework of CEC’05. In fact, this test suite has been properly characterized
in a recent work [MS11] by means of the Fitness Distance Correlation (fdc), so we have decided
to use this measure in this work together with the Fitness Cloud (fc) and Escape Probability
(ep), to test the resulting landscape characterizations from all combinations of neighbors in PSOk.
With the outlined information, we expect to test the second work hypothesis: a number of 6±2
informants in the operation of PSO may compute good particles for longer than other
PSO formulations in multiple complex benchmarking problems. We here test that, on the
one hand, few informants (one or two as in Standard PSO) could sometimes show high escaping
probabilities and positive correlation, although evolving solutions with poor fitness values. On the
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other hand, we will show that in PSO with more than 10 informants, solutions could concentrate
on small regions whose sizes decrease as the neighborhood topology increases, thus confusing the
search and again reducing the escape probability

7.5.1 Evolvability Measures

Before we pass to discuss the results, we describe here the evolvability measures used in this work
and their application to the particular case of PSO.

- Fitness-distance analysis quantifies the relation between the fitness of particles f(xi) in the
landscape and their distances to the nearest global optimum xmin (assuming that we are mini-
mizing) [LLY11]. Distance between points in continuous domains are measured using Euclidean
distance dE . Then, the fitness-distance correlation (fdc) can be quantified by the rfdc coefficient:

rfdc =
cfd

sf · sd
, being cfd =

1

n

n∑

i=1

(fi − f) · (di − d) (7.5)

where fi is the fitness of solution f(xi), di is the distance of the solution xi to the optimum
di = de(xi,xmin), f , d, sf , and sd are the means and standard deviations of the fitness and
distance samples, respectively. In our experiments, for each function and for each PSOk version,
we identify the samples in 25 independent runs with the 1% best fitness values to compose the
rfdc. An interpretation of this coefficient can be as follows [MS11]: a positive rfdc near to 1 means
globally convex single-funnel topologies. A value around 0 of this coefficient may indicate plateau
shape landscapes with tiny sharp basins and problems without any global structure. A negative
value of rfdc indicate the existence of “deceiving” landscapes, where an optimizer (PSO in our
case) perceives poor objective function values closer to the minimum than farther away.

- Fitness-fitness or Fitness Cloud (fc) [VCC+04] analysis is basically a plot of fitness values of
individuals against fitness values of their neighbors. By definition of fc, for each sampled individual
xi with fitness fi, generate k neighbors by applying a genetic operator to xi, and let be fi the
mean fitness of all neighbors of xi. Then, the set of points {(f1, f1), . . . , (fn, fn)} is taken as the
fitness cloud. In our particular case, we are interested in computing the fitness cloud by plotting
the fitness (f ′i) of a new particle (x′i) that is generated from their neighbors (using velocity rule
in Equation 3.11), and the mean fitness fi of all these neighbors of xi. Now, the set of points
{(f ′1, f1), . . . , (f

′
n, fn)} can be taken as the fitness cloud.

- The Escape Probability (ep) [Mer04] considers the number of steps required to escape from a
local optimum. It is defined as P (fi) =

1
Si
, where Si denotes the average number of steps required

to find an improving move starting in an individual with fitness value fi. In the context of our
PSO, we averaged the improving intervals (evaluation steps) computed by the each particle of
the swarm to calculate escape probability through the iteration process. In next section, several
examples of ep are plotted for f24.

Since in this experimentation we have concentrated on a swarm size with 30 particles, the
number of PSOk’s versions is 30, from PSO1 to PSO29, plus PSO30 represented by the so called
FIPS-All. Summing up, 25 independent runs for each algorithm version and for each function have
been performed, resulting in a total number of 25× 25× 30 = 18, 750 experiments. The resulting
rfdc coefficients are plotted in Figure 7.6 as bar graphs. Next, we make several observations about
this figure. Later, we will focus on interesting observations concerning fc and ep.
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Figure 7.6: Each plot contains the mean rfdc coefficients in the Y-axis (out of 25 independent runs)
of the different PSOk versions (for the 30 possible values of k) in X-axis, for all CEC’05 functions
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Figure 7.7: Fitness-distance plots of functions f5, f15, and f24, generated from independent execu-
tions of PSO with 2, 6, 12, and 29 informants

7.5.2 Fitness-Distance Analysis

In general, we can first observe from Figure 7.6 that PSO with 6 informants shows rfdc >> 0
in single-funnel functions (f1-f10) and rfdc << 0 in multi-funnel ones (f11-f25). This means that
using 6 informants, our proposal is able to distinguish between globally convex and/or deceiving
(multiple convexities) landscapes, and independently to the problem modality. Nevertheless, three
exceptions are registered: for f8, with plateau landscape and hence, highly dependent to the swarm
initialization, and for f16 and f17, which were characterized as bi-funnel in [MS11]. For these two
last functions, there is a certain probability of evolving samples (from initialization) on the funnel
where the optimum is located [SWLH06], which contributes to compute a rfdc higher than 0.

Second, for a series of functions (f3, f6, f11, f12, f14, f14, and f25) there exists a change from
negative to positive in the tendency of rfdc, resulted from PSOk versions with number of informants
close to 6. This suggests that using few informants (<4) could create a tendency to quickly move
toward non interesting regions, leading the algorithm to show an early stagnation and obtaining
weakly correlated solutions far from the optimum.

More in detail, Figure 7.7 shows fitness-distance plots resulted from independent executions of
PSO with 2, 6, 12, and 29 informants, for functions f5, f15, and f24. We can observe that using few
informants (2 in this case), the algorithm shows correlation for the three functions, but evolving
solutions with poor fitness values. With more than 10 informants, solutions are again correlated,
although concentrating on small regions on multi-funnel landscapes (as plotted for f15 and f24).
Using 6 informants in PSO is the best trade-off between fitness-distance correlation and fitness
quality. A special case can be observed for f24 (highly deceptive), where solutions are gradually
improving although showing certain distance with regards to the global optimum.
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Figure 7.8: Fitness-fitness clouds {f ′, f(n)} of functions f5, f15, and f24, generated from indepen-
dent executions of PSOk with 2, 6, 12, and 24 informants. Graphs in bottom plot the Escape
Probability concerning f24 for dimensions 10 and 50

7.5.3 Fitness-Fitness Analysis

Figure 7.8 plots the Fitness Clouds of functions f5, f15, and f24, generated from independent
executions of PSO with 2, 6, 12, and 29 informants. For the three functions, a number of 6
informants is able to keep for longer the generation of new better particles with improving fitness
(f ′). In fact, regression lines calculated from distribution clouds (of 2, 12, and 29 informants)
generally fit the diagonal line of plots, whereas regression lines of 6 informants’ clouds show positive
slopes in final evolution steps, with regard to diagonal lines. This means that new fitness values
f ′ calculated using 6 informant neighbors improve more frequently the mean fitness f(n) of these
neighbors.

An illustrative example of this behavior can be explicitly observed in Figure 7.8 bottom, where
the Escape Probability concerning f24 is progressively plotted. Solutions evolved by PSO6 generally
show a moderate ep progress, although reaching a deeper basin of local optimum, e.g., better fitness
values.

After this comprehensive experimentation, we have tested our initial research question showing
that 6 informants in PSO is the best trade-off between fitness-distance and fitness quality. This
is noticeable since the algorithm is simple (Occams razor), and these results together with the
previous ones in Section 7.4 suggest that this number of 6±2 informants put into PSO a better
learning procedure than other combinations of informants, which makes it able to generate good
particles for a longer time.
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7.6 PSO6 with Multiple Trajectory Search

In spite of the advantage of observed in PSO with 6±2 informants, the new proposal (PSO6) may
still show a certain local basin attraction and moderate performance on non-separable complex
problems, as typically observed in particle swarm versions. Therefore, additional mechanisms have
to be used to correct this drawback.

In this section, we add to our PSO6 a local search method, with the aim of improving its
performance on complex problems with different landscape features: multimodal, multifunnel,
non-separable, shifted, and rotated. First, as proven in [SWLH06], PSO tends to converge quickly
to the local basin that contains the majority of particles at initialization. A consequence of this
observation is that PSO may exhibit higher tendency to stagnate on multimodal functions than
other algorithms. In this case, we use our PSOk with six informants that performs an optimized
learning procedure to move particles to more interesting regions, and hence avoid the attraction
to non promising local basins.

Second, as most of PSO versions work dimension by dimension, it is actually hard to find the
problem optima when it is located far from the origin (or when it is on an axis or a diagonal) of
coordinates in non-separable problems. To alleviate this last issue, we incorporate a local search
method to our PSO6 by means of which, particles move individually, exploring their problem
neighborhoods in the context of variations of dependent variables.

Our new proposal, called PSO6-Mtsls (PSO6 with Multiple Trajectory Search), is then eval-
uated on a set of 40 benchmark functions in order to validate whether it is competitive with the
current state of the art in continuous optimization, or not.

7.6.1 The Proposal: PSO6-Mtsls

Our proposal, PSO6 with Multiple Trajectory Search (PSO6-Mtsls), consists in running PSO6 as a
baseline method in which we have incorporated a local search mechanism to improve solutions ob-
tained by the particle swarm algorithm. In concrete, we have employed the well-known LS1 [TC08]
of MTS because of three main reasons: (1) LS1 is the responsible of most of the MTS performance,
(2) it has been proven to be an efficient optimizer on large scale and non-separable complex prob-
lems [TC08], and (3) it has been successfully used to hybridize other swarm intelligence approaches
like IPSO [MdOSVdED11], ACO [LMdOA+11], and DE [MLTPn09].

In the context of the collective learning procedure induced by informant particles in PSOk,
the LS1 procedure can be interpreted as a particle’s individual learning ability that allows it to
explore-explode its immediate area neighborhood in the absence of any social influence. In this
sense, the movement of an individual particle depends on the improvement obtained from variations
in its adjacent variables (solution dimensions) and hence, the interdependency of variables in non-
separable problems can be tackled more effectively than simply using vector operators inducing
linear combinations (as in PSO versions).

PSO6-Mtsls invokes a local search routine after a certain number of iterations, performing
successive improvements on the global best particle (bt) obtained by PSO6 at moment (t) of
invocation. We have to notice that, in spite of PSO6 does not work directly with the global best
particle (but indirectly if it happen to take part in the current set of six informants), it is kept
updated through the iteration procedure, to be used by the local search LS1 as a target particle.
If PSO6-Mtsls detects that an application of LS1 does not improve the solution, the local search is
stopped. In this way, the additional cost in terms of extra function evaluations performed by LS1
can be lighten.
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Algorithm 9 Pseudocode of PSO6-Mtsls

1: ϕj ← ϕ/k
2: S ←initializeSwarm(S) /* Swarm S with Ss number of particles */
3: /************* Initializing Search Subranges *************/
4: for k = 1 to Ss do
5: Improvek ← True
6: SRk ← (Upper Bound− Lower Bound) · 0.5
7: end for
8: while t < MAXIMUMt do
9: /************* PSOk, with k = 6 *************/

10: for each particle i of S do
11: N t

i ← generate neighborhood(k, i, St) //Equation 7.4
12: vt+1

i ← update velocity(vt
i ,x

t
i, ϕj ,N

t
i ) //Equation 3.11

13: xt+1
i ← update positon(xt

i,v
t+1
i ) //Equation 3.1

14: pt+1
i ← update local best(pt

i,x
t+1
i )

15: end for
16: bt+1 ← update global best(bt)
17: /***************** MTS:LS1 *****************/
18: if t%ls freq = 0 then
19: Xk ← bt+1

20: for j = 1 to #max ls iters do
21: Improvek, SRk ← LS1(Xk, Improvek, SRk)
22: if Improvek = False then
23: break
24: end if
25: end for
26: update(t)
27: end if
28: end while

The pseudocode of PSO6-Mtsls can be observed in Algorithm 9 and is organized as follows: the
first phase, from line 1 to 7, corresponds to parameter setting and swarm initialization. For the
initialization of particles (line 3), we have partially used the method proposed in [MPnLR10] to
generate good diverse solutions. This method starts with the partition of the range of each dimen-
sion to sr subranges of equal size. Then, for each particle, a subrange for each dimension is selected
based on the inverse probability of the frequency count associated with the subrange. Finally, a
value is uniformly generated within the selected interval and the frequency count associated to the
subrange is incremented.

In a second phase, the PSO6-Mtsls is then iterated until the stop condition is met: a given
number of function evaluations is reached. Finally, the PSO6 performs one iteration (lines 10 to
15), the global best is updated in line 16, and the local search L1 is invoked with a certain frequency
according to ls freq (line 18 to 27). In this case, the local search procedure is repeated a given
number of iterations max ls iters while the solution is successively improved. In other case, the
local search is aborted and the PSO6 follows with a new iteration. Once the stop condition is
reached, the algorithm returns the best particle found so far.
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Table 7.4: Complete parameter settings
Parameter Value Algorithms

Swarm size Ss = D · 0.7 All

Acceleration coefficient ϕ = 4.1
PSO6, PSO6-Mtsls,
FIPS-ALL, FIPS4

Acceleration coefficient ϕ = 0.5 + ln(2) S2011
Inertia weight ω = 1/(2 · ln(2)) S2011

Constriction coefficient χ = 0.7298
PSO6, PSO6-Mtsls,
FIPS-ALL, FIPS4

Number of Informants k = 6 PSO6, PSO6-Mtsls
Number of Informants k = 4 FIPS4
Number of Informants k = Ss FIPS-ALL
Number of Informed by a give one k = 3 S2011
Topology T = U −Random PSO6, PSO6-Mtsls
Topology T = Square FIPS4
Topology T = Complete FIPS-ALL
Topology T = U −Random S2011

Local search frequency ls freq = 5 PSO6-Mtsls
Max. ls. Iterations max ls iters = 70 PSO6-Mtsls

7.6.2 Experiments with PSO6-Mtsls

This new experimental study is structured in three different phases. First, we evaluate our PSO6-
Mtsls and other related PSO versions concentrating on the original PSO6 without any local search
procedure, the Standard PSO 2011 (S2011), the Fully Informed PSO (FIPS-ALL), and the Fully
Informed Square Neighborhood (FIPS4, the best one in [MKN04]), by comparing their perfor-
mances. Second, our proposal is compared against other 15 algorithms featured in SOCO’10, on
different problem scales with dimensions 50, 100, 200, and 500 continuous variables. The third ex-
perimental phase corresponds to the evaluation of PSO6-Mtsls with regards to other similar modern
swarm intelligent approaches also hybridized with local search methods: IPSO-Powell [MdOAS11],
IPSO-Mtsls [MdOSVdED11], and IACOr-Mtsls [LMdOA+11].

For the two first phases, we used the 19 functions (labeled soco∗) provided in SOCO’10. In this
benchmark, functions soco1 to soco6 were originally used in CEC’08 [TYS+07]. Functions soco7
to soco11 were added to the first ones in the special session of ISDA’09 [HL09a], and functions
soco12 to soco19 consist on hybridized functions that combine two others (being one of them non-
separable). For the third phase, we extended the working set by including 21 more functions of
CEC’05 (labeled as cec∗) to the previous 19 of SOCO’10, then constituting a set of 40 functions.
We have to notice that, as done in [LMdOA+11], from the original 25 functions of CEC’05 we
omitted cec1, cec2, cec6, and cec9, since they are the same as soco1, soco3, soco4, and soco8.
Table 3.2 in Chapter 3 shows the set of functions used in this study with their most interesting
features: unimodal, multimodal, separable, non-separable, shifted to biased optimum, rotated, and
hybrid composed. The respective bounds of search ranges and biases to optima are also indicated.
The detailed descriptions of all these functions can be found in [HLM10b] and [SHL+05].

Following the specifications of the two benchmarks used, we have applied as stop conditions
a maximum number of 5,000·D evaluations for SOCO’10, and 10,000·D evaluations for CEC’05
functions. We performed 25 independent runs for each investigated algorithm and problem dimen-
sion. We report the error values of the best solutions found defined as: f(x)− f∗, where f∗ is the
optimum of the function f . Error values lower than 10−14 (0-threshold) are approximated to zero.



102 7.6. PSO6 WITH MULTIPLE TRAJECTORY SEARCH

Table 7.5: Swarm size parameter tuning: successful runs with best performances resulted by PSO6,
with different swarm sizes on different problem dimensions

Dimension
Swarm Size

20 30 60 100 200

50 0 19 0 0 0
100 0 0 19 0 0
200 0 0 0 19 0
500 0 0 0 0 19

Diff. + + + +

Table 7.6: LS1 parameter tuning: best performed values are in bold

LS1 parameter
Values for problem dimension

50 100 200 500

ls freq 5,10,30,50 5,10,30,50 5,10,30,50 5,10,30,50
max ls iters 10,30,50,70 10,30,50,70 10,30,50,70 10,30,50,70

The parameter setting applied to PSO6, as well as to the other evaluated PSO versions, are
shown in Table 7.4 and follow the specification of their original works were they where pro-
posed [GNA11a], [MKN04], and [PCG11]. Nevertheless, concerning the swarm size, we have de-
cided to perform an additional parameter tuning with PSO6, since in this work we are using a
large set of functions with different dimension scales. Therefore, we have carried out a preliminary
experimentation with PSO6 by setting it with different combinations of swarm sizes and problem
dimensions in the context of SOCO’10.

Table 7.5 contains the number of functions for which PSO6 obtains the best median results
for each combination of swarm size and problem dimension. In this table, we can easily observe
that the swarm size seems to be proportional to the problem dimension, since a higher swarm is
more accurate for large scales, and opposite. The last row specifies that statistical differences were
found in distributions (+). For this reason, and after additional runs, we have opted to use a linear
proportion to set the swarm size by using the 70% of the problem dimension as the number of
particles in the swarm. In this way, we use Ss = D · 0.7 in Table 7.4 for PSO6, as well as for all
other PSO versions.

In the case of our PSO6-Mtsls, specific parameters to the particle swarm use the same setting
as in PSO6, including the proportional swarm size. For specific parameters to LS1, a series of
tuning experiments have been also carried out to find an accurate combination of local search
frequency and maximum number of iterations in the local search procedure. Table 7.6 shows the
experimented values for LS1, where the best parameter combination is in boldface. As expected,
the higher frequency and the maximum number of LS1 iterations shows the better performance
for almost all problem dimensions. Only in the case of D = 50, a different combination performed
better with ls freq = 30 and max ls iters = 50. We suspect that more frequent and large LS1
procedures in PSO6-Mtsls could be costly when D = 50, that is, the shorter scale in SOCO’10,
for which a lower number of function evaluations are allowed. Nevertheless, for the sake of a
homogeneous parameter setting, we have decided to use always the best combination for almost all
problem dimensions: ls freq = 5 and max ls iters = 70. In fact, this combination is close to the
ones used in related works in the literature [MdOSVdED11], [LMdOA+11], [TC09]. Parameters of
all other compared algorithms can be found in their reference works.
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Table 7.7: Average Friedman’s rankings with Holm’s correction (α = 0.05) for SOCO’10 functions
with dimensions 50 and 100

Algorithm
50 100

Rank Holm′sp−value Rank Holm′sp−value

PSO6-Mtsls 1.367 - 1.152 -
PSO6 2.149 0.16E-01 2.331 4.36E-02
FIPS4 2.915 0.44E-02 2.952 2.05E-02
S2011 3.684 2.34E-04 3.763 6.55E-05
FIPS-ALL 5.000 2.90E-10 5.000 7.26E-11

7.6.3 PSO6-Mtsls: Performance Comparisons

This section is devoted to show all the performance results of our PSO6-Mtsls. A series of com-
parisons with other PSO versions, as well as with other modern proposals in the current state of
the art are carried out from different points of view. Our goal is to solve different problems as well
as highlighting its advantages.

Comparison of PSO Versions

Figures 7.9 and 7.10 show the boxplots representing que distributions of error fitness obtained
by Standard PSO 2011 (S2011), Fully Informed PSO with complete neighborhood (FIPS-ALL),
FIPS with Squared Neighborhood (FIPS4), PSO6, and our proposal here PSO6-Mtsls, for the 19
functions of SOCO’10 benchmark. Table 7.7 shows the average ranking of compared algorithms
resulted from the Friedman’s statistical test and applying a post-hoc Holm’s correction for multiple
comparisons (α = 0.05), for problem dimensions 50 and 100. In this table, the algorithm with the
best ranking is used as control method (marked in boldface). Thus, those algorithms with adjusted
Holms’s p-values < 0.05 are statistically outperformed by the control method.

In general, we can observe in figures 7.9 and 7.10 that PSO6-Mtsls shows the best performance
in (almost) all functions, and for the two analyzed problem dimensions. As shown in Table 7.7,
our proposal is the best ranked algorithm and therefore, it is set as control method for the post-
hoc Holm’s test. For dimension 50, all compared PSO versions excepting PSO6 are statistically
outperformed by PSO6-Mtsls. We have to notice that LS1 parameters were set using a homoge-
neous tuning for all dimensions, although being slightly disadvantageous in the particular case of
dimension 50. We suspect that using specific parameter setting for this dimension could lead our
PSO6-Mtsls to be statistically better than PSO6. In fact, in the case of dimension 100, we can
effectively observe that our proposal outperforms all other compared algorithms, including PSO6,
with statistical confidence.

If we examine non composed functions (soco1 to soco11) in Figures 7.9 and 7.10, we can clearly
observe that PSO6-Mtsls always shows the best results, followed by PSO6, FIPS4, S2011, and
FIPS-ALL. Nevertheless, there are several functions: soco1, soco6, and soco7, for which PSO6-
Mtsls obtained similar distributions to the ones of PSO6, and FIPS4. Not surprisingly, these
functions are characterized as separable in SOCO’10, and hence, PSO6 and FIPS4 are also able to
show accurate performances with regards to our proposal. Therefore, the possible benefits induced
by the local search method could be said to pay in non-separable functions.

Concerning composed functions (soco12 to soco19), the error distributions obtained by PSO6-
Mtsls are in general better than the ones of compared PSO versions. Therefore, we can claim that
the use of local search (LS1) in PSO6 is advantageous in the context of SOCO’10 benchmark of
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Figure 7.9: SOCO’10 function’s fitness distributions of S2011, FIPS-ALL, FIPS4, PSO6, and
PSO6-Mtsls, for dimension 50

functions. However, a single exception can be observed for function soco18 with dimension 100,
where the high proportion of soco4 (separable) variables in the composition with soco9 is the prob-
able reason for PSO6 to show a better error distribution, even without any local search procedure.
In this sense, a secondary observation is that PSO6 generally shows a better performance than
FIPS4 (the best algorithm in [MKN04]), and is statistically better than FIPS-ALL and S2011.
This result was also founded in our previous work [GNA11a], although in the context of CEC’05
benchmark of functions, with dimension 30.
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Figure 7.10: SOCO’10 function’s fitness distributions of S2011, FIPS-ALL, FIPS4, PSO6, and
PSO6-Mtsls, for dimension 100

Comparisons with Other Algorithms in the State of the Art

Figure 7.11 shows the boxplots representing the median error distributions of the 19 SOCO func-
tions obtained with PSO6, PSO6-Mtsls, and the algorithms 2 featured in the special issue of
SOCO’10, for dimensions 50, 100, 200, and 500. From these last algorithms, the results of DE,
CHC, and G-CMA-ES were provided as base-reference techniques to compare with, previous to
the global comparisons. In relation with this figure, Table 7.8 contains the results of applying the
Friedman’s test and Holm’s corrections to the aforementioned distributions of median errors, for
all compared algorithms and dimensions.

2The complete information about featured algorithms in SOCO’10 is available in http://sci2s.ugr.es/EAMHCO/
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Figure 7.11: SOCO’10 function’s fitness distributions of all featured algorithms and PSO6 with
and without Mtsls, for dimensions 50, 100, 200, and 500

In general, our PSO6-Mtsls is statistically better than PSO6, and shows more accurate dis-
tributions than RPSO-vm and IPSO-Powell, the two other PSO versions evaluated in SOCO’10.
An exception can be found for dimension 500 where IPSO-Powell also shows an accurate distribu-
tion, although with worse median value than our proposal. Concerning the remaining algorithms,
PSO6-Mtsls significantly outperforms G-CMA-ES, CHC, DE, VXQR1, EvoPROpt, and MA-SSW.
In 200 and 500 dimensions, our proposal also outperforms GODE and DE-D40-Mm. Nevertheless,
the best ranked distributions correspond to the ones of MOS-DE, which is established as control
method in Table 7.8. In spite of this, we can effectively check that adjusted p-values of PSO6-
Mtsls are always higher than 0.05 (confidence level), which leads us to ensure that no statistical
differences can be found between our proposal and MOS-DE. The remaining techniques featured
in SOCO’10: IPSO-Powell, Sade-MMTS, jDElscop, GaDE, and SOUPDE are also in the group
of similar algorithms (without statistical differences in their performance) with regards to our
proposal and the control algorithm (MOS-DE).

From the point of view of the problem scalability, we can observe in Figure 7.11 that the
performance of PSO6-Mtsls keeps competitive results even in dimension 500 with regards to the
group of best compared algorithms. In fact, we have to notice that the median errors of PSO6-Mtsls
are below the 0-threshold at least for 12 functions out of 19 (SOCO’10). Therefore, as shown in
boxplots (Figure 7.11), our proposal resulted with a global median of 1.00E-14 for all dimensions.
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Table 7.8: Average Friedman’s rankings with Holm’s correction (α = 0.05) for SOCO’10 functions
and featured algorithms

Algorithm
50 100 200 500

Rank Holm′sp Rank Holm′sp Rank Holm′sp Rank Holm′sp
PSO6-Mtsls 5.894 0.16E+01 7.929 1.24E-01 6.952 2.40E-1 7.236 2.14E-01
PSO6 10.263 0.13E-02 11.763 7.12E-05 12.315 4.61E-06 12.947 8.40E-08

SOUPDE 7.578 0.62E+00 6.763 5.40E-01 7.553 1.44E-01 7.631 1.41E-01
DE-D40-Mm 9.342 5.53E-01 8.710 5.85E-02 8.578 3.90E-02 8.657 3.45E-02
GODE 8.657 0.15E+00 7.894 1.44E-01 7.973 1.02E-01 7.921 1.02E-01
GaDE 6.868 0.11E+01 5.631 1.26E+00 5.631 6.23E-01 5.552 6.38E-01
jDElscop 5.868 0.16E+01 5.315 1.26E+00 5.315 6.23E-01 5.052 6.38E-01
Sade-MMTS 6.263 0.16E+01 5.631 1.26E+00 6.157 5.47E-01 6.368 5.40E-01
MOS-DE 4.921 - 4.315 - 3.973 - 3.921 -
MA-SSV 11.736 4.45E-04 10.421 2.33E-03 9.131 1.64E-02 11.578 3.54E-05
RPSO-vm 9.552 0.52E-02 9.631 1.17E-02 9.210 1.29E-01 8.236 6.74E-02
IPSO-Powell 6.078 0.16E+01 8.210 1.22E-01 7.736 1.53E-02 6.173 6.30E-01
EvoPROpt 10.184 1.43E-01 12.421 1.05E-05 13.026 4.60E-07 12.526 1.95E-05
VXQR1 10.447 0.96E-03 9.868 7.71E-03 10.815 3.55E-04 10.000 2.27E-03

DE 10.026 0.18E-02 9.210 2.53E-02 9.131 1.64E-02 8.815 2.81E-02
CHC 16.157 1.11E-11 15.736 5.03E-11 16.052 2.67E-12 16.105 1.64E-12
G-CMA-ES 13.157 7.45E-06 13.368 4.93E-07 13.342 1.61E-07 13.473 7.73E-08

In this way, we can claim that our approach is also competitive as the problem dimensionality
increases.

An interesting observation in this comparison concerns the performance of G-CMA-ES, which
is relatively limited on SOCO’10 functions. Although this algorithm shows accurate results on non-
separable functions soco3, soco5, and soco8, it has a moderate performance on separable unimodal
and multimodal ones, such as soco4, soco6, soco7, as well as on non-separable hybrid composed
(from soco12 to soco19). Taking into account that G-CMA-ES obtained the best results in the
special session of CEC’05, we suspect that the existence (or not) of rotated functions, on which
this algorithm shows highly accurate results, could influence its global performance with regards
to other compared algorithms. We have to notice that a number of rotated functions (21 out of
25) are included in CEC’05, whereas practically none of them can be found in SOCO’10. A similar
observation was made in [LMdOA+11], where the authors argued that the global performance of a
given algorithm can be biased to certain function feature more expressed in the tackled benchmark.
This motivated us to use an extended benchmark composed of 40 problem functions from CEC’05
and SOCO’10 (previously described in Table 3.2 in Chapter 3) to compare our proposal with G-
CMA-ES, as well as with other related swarm intelligent approaches with local search methods.
The results of this comparison are analyzed in the following section.

Comparisons on an Extended Benchmark

Table 7.9 contains the median of distribution errors obtained by G-CMA-ES [AH05], IPSO-
Powell [MdOAS11], IPSO-Mtsls [MdOSVdED11], IACOr-Mtsls [LMdOA+11], and PSO6-Mtsls,
out of 30 independent runs on the extended benchmark of 40 functions taken from SOCO’10
and CEC’05, for dimension 50. IPSO-Powell and IPSO-Mtsls are PSO versions that perform an
incremental social learning mechanism for swarm size adaptation on continuous optimization func-
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Table 7.9: Median Errors obtained by G-CMA-ES, IPSO-Powell, IPSO-Mtsls, IACOr-Mtsls, and
PSO6-Mtsls, for dimension 50

F/A G-CMA-ES IPSO-Powell IPSO-Mtsls IACOr-Mtsls PSO6-Mtsls

fsoco1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
fsoco2 2.64E-11 1.42E-14 4.12E-13 4.41E-13 2.96E-12
fsoco3 0.00E+00 0.00E+00 6.38E+00 4.83E+01 8.47E-11
fsoco4 1.08E+02 0.00E+00 0.00E+00 0.00E+00 0.00E+00
fsoco5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
fsoco6 2.11E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
fsoco7 7.67E-11 0.00E+00 0.00E+00 0.00E+00 0.00E+00
fsoco8 0.00E+00 1.75E-09 2.80E-10 2.66E-05 0.00E+00
fsoco9 1.61E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
fsoco10 6.71E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
fsoco11 2.83E+01 0.00E+00 0.00E+00 0.00E+00 0.00E+00
fsoco12 1.87E+02 1.02E-12 0.00E+00 0.00E+00 0.00E+00
fsoco13 1.97E+02 2.00E-10 5.39E-01 6.79E-01 3.09E+00
fsoco14 1.05E+02 1.77E-12 0.00E+00 0.00E+00 5.37E+01
fsoco15 8.12E-04 1.07E-11 0.00E+00 0.00E+00 0.00E+00
fsoco16 4.22E+02 3.08E-12 0.00E+00 0.00E+00 0.00E+00
fsoco17 6.71E+02 4.35E-08 1.47E+01 6.50E+00 6.68E+00
fsoco18 1.27E+02 8.06E-12 0.00E+00 0.00E+00 6.21E+00
fsoco19 4.03E+00 1.83E-12 0.00E+00 0.00E+00 0.00E+00

fcec3 0.00E+00 8.72E+03 1.59E+04 8.40E+05 1.73E+02
fcec4 4.27E+05 2.45E+02 3.88E+03 5.93E+01 2.08E+02
fcec5 5.70E-01 4.87E-07 7.28E-11 9.44E+00 2.98E+03
fcec7 3.85E-14 0.00E+00 0.00E+00 0.00E+00 0.00E+00
fcec8 2.00E+01 2.00E+01 2.00E+01 2.00E+01 2.00E+01
fcec10 9.97E-01 8.96E+02 8.92E+02 2.69E+02 1.84E+02
fcec11 1.21E+00 6.90E+01 6.64E+01 5.97E+01 3.38E+01
fcec12 2.36E+03 5.19E+04 3.68E+04 1.37E+04 6.97E+02
fcec13 4.71E+00 3.02E+00 3.24E+00 2.14E+00 6.70E+00
fcec14 2.30E+01 2.35E+01 2.36E+01 2.33E+01 2.27E+01
fcec15 2.00E+02 2.00E+02 2.00E+02 0.00E+00 3.06E+02
fcec16 2.15E+01 4.97E+02 4.10E+02 3.00E+02 1.95E+02
fcec17 1.61E+02 4.54E+02 4.11E+02 4.37E+02 2.20E+02
fcec18 9.13E+02 1.22E+03 1.21E+03 9.84E+02 8.25E+02
fcec19 9.12E+02 1.23E+03 1.19E+03 9.93E+02 8.25E+02
fcec20 9.12E+02 1.22E+03 1.19E+03 9.93E+02 8.25E+02
fcec21 1.00E+03 1.19E+03 1.03E+03 5.00E+02 7.18E+02
fcec22 8.03E+02 1.43E+03 1.45E+03 1.13E+03 5.00E+02
fcec23 1.01E+03 5.39E+02 5.39E+02 5.39E+02 7.24E+02
fcec24 9.86E+02 1.31E+03 1.30E+03 1.11E+03 2.17E+02
fcec25 2.15E+02 1.50E+03 1.59E+03 9.38E+02 2.15E+02

#bests 11/40 14/40 18/40 21/40 23/40

tions. These two IPSO algorithms are hybridized with Powell’s direction set [Pow64] and Mtsls
(LS1) [TC08] local search procedures, respectively. IACOr-Mtsls consists of an Ant Colony Opti-
mization algorithm also performing an incremental social learning mechanism as in the previous
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Table 7.10: Average Friedman’s rankings with Holm’s correction (α = 0.05) for SOCO’10 and
CEC’05 functions

Algorithm Rank Holm′sp
PSO6-Mtsls 2.48 -
IACOr-Mtsls 2.68 5.71E-01
IPSO-Mtsls 3.08 1.79E-01
IPSO-Powell 3.35 4.41E-02
G-CMA-ES 3.38 4.36E-02

PSO versions, and also hybridized with Mtsls (LS1). In this way, we can compare our proposal
with modern swarm intelligent approaches hybridized with the same and different local search
methods. G-CMA-ES is a covariance matrix adaptation evolution strategy that performs frequent
restarts with increasing population size. As commented before, we also compare our PSO6-Mtsls
with G-CMA-ES on CEC’05 non-separable/rotated functions, where this last algorithm shows an
impressive performance. In this table, the best median values for each function are represented
in boldface, and the last row contains the global count of the number of best medians for each
compared algorithm.

A first observation in Table 7.9 is that PSO6-Mtsls obtains the highest number of best median
errors (23 out of 40), followed by IACOr-Mtsls, IPSO-Mtsls, IPSO-Powell, and finally G-CMA-ES.
The statistical tests associated to these results are presented in Table 7.10, where we can effectively
validate that our proposal is the best ranked algorithm, then working in this case as control method
for the post-hoc Holm’s correction. According to this, we can even ensure that IPSO-Powell and
G-CMA-ES are statistically outperformed by our PSO6-Mtsls.

In this sense, a second observation is that our approach does not show statistical differences with
regards to the other two swarm intelligent methods hybridized with Mtsls, that is, IACOr-Mtsls and
IPSO-Mtsls. This led us to suspect that Mtsls is largely responsible for the accurate performance of
these three approaches, in comparison with IPSO-Powell and G-CMA-ES. However, the difference
in their ranking values seems to be mostly due to the contribution of their base methods: PSO6,
IPSO, and IACO.

A final interesting observation concerns the different function features that our proposal can
successfully tackle with regards to the four compared techniques. Table 7.11 shows a detailed
comparison presented in form of (win, draw, lose) according to different features of the extended
benchmark of 40 functions. In comparison with G-CMA-ES, our approach obtained a higher
number of “wins” (better medians) on non-separable, multimodal, and rotated functions (as well
as in non-separable and non-rotated). We have to notice that rotated functions correspond to
CEC’05 benchmark on which G-CMA-ES was the best algorithm. In fact, our PSO6-Mtsls obtained
8 “wins” in CEC’05 and 10 in SOCO’10, in contrast with 5 and 1 “loses” in these two benchmarks
with regards to G-CMA-ES. If we have a look on non-separable functions, our proposal obtains a
higher number of “wins” than G-CMA-ES and IPSO-Powell, although the number of “draws” is
higher in comparison with IACOr-Mtsls and IPSO-Mtsls. Once again, the effect that Mtsls induces
on non-separable functions leads hybridized algorithms with this local search method to outperform
other compared techniques. A similar behavior can be observed concerning multimodal functions
with a high number of “draws” when comparing hybridized algorithms with Mtsls. Nevertheless, it
is on rotated functions where PSO6-Mtsls shows a higher number of “wins” in comparison with all
other algorithms. In this case, the base method PSO6 is responsible of the accurate performance,
since it never obtained “loses” on rotated functions, excepting 5 in comparison with G-CMA-ES.
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Table 7.11: Number of best median errors with regards to different functions features when com-
paring PSO6-Mtsls versus G-CMA-ES, IPSO-Powell, IPSO-Mtsls, and IACOr-Mtsls. The results
are presented in form of (win, draw, lose)

Function’s PSO6-Mtsls versus

features G-CMA-ES IPSO-Powell IPSO-Mtsls ACOr-Mtsls

Separable (6, 1, 0) (0, 4, 0) (0, 3, 0) (0, 4, 0)
Non sep. (12, 4, 6) (13, 9, 2) (9, 12, 3) (9, 12, 5)

Unimodal (1, 2, 1) (1, 5, 1) (1, 5, 1) (1, 5, 1)
Multimodal (17, 3, 5) (12, 8, 1) (8, 10, 2) (8, 11, 4)

Rotated (7, 2, 5) (7, 3, 0) (7, 3, 0) (7, 4, 0)
Non rot. (10, 3, 1) (6, 10, 2) (2, 12, 3) (2, 12, 5)

SOCO’10 (10, 3, 1) (5, 10, 2) (1, 12, 3) (1, 12, 2)
CEC’05 (8, 2, 5) (8, 3, 0) (8, 3, 1) (8, 4, 3)

Total (18, 5, 6) (13, 13, 2) (9, 15, 3) (9, 16, 5)

In summary, the local search method Mtsls (LS1) seems to be responsible of the successful
performance of our proposal on non-separable and multimodal functions, whereas the learning
procedure of PSO6 takes mostly part in rotated ones. PSO6-Mtsls shows more “wins” than “loses”
in all comparisons, although the number of “draws” is higher when it is compared with IACOr-
Mtsls and IPSO-Mtsls, e. g., the other swarm intelligent approaches hybridized with Mtsls.

7.7 Conclusions

In this chapter, we generalize and analyze the number of informants that take part in the calculation
of new particles. For this, we have created a new version of Informed PSO, called PSOk with
the possibility of managing any neighborhood size k, from 1 informant to all of them in the
swarm (FIPS-ALL). The new proposal has been thoroughly analyzed from the point of view of the
evolvability, and it has been also hybridized with a modern local search method (MTS) to tackle
with non-separable problems more efficiently. A series of experiments and comparisons have been
carried out in the scope of CEC’05 and SOCO’10 benchmarks of functions. The influence of the
number of informants, the problem dimension, and the swarm size have been also analyzed.

In general, the following conclusions can be extracted after our work on this initial hypothesis:

1. A number of 6 informants in the neighborhood makes the algorithm to perform with high suc-
cess in practically all tackled functions. This means that, at least for the popular continuous
benchmarks, researchers should consider PSO6 instead of the standard PSO.

2. Using few informants (<4) leads the PSOk to show a positive fitness-distance correlation,
although it find solutions with poor fitness values and far from global optima. With more than
10 informants, solutions are again correlated, although concentrating on small non interesting
regions of the landscape. Using 6 informants is the best trade-off between fitness-distance
and fitness quality.

3. In general, the higher the number of informants (involved in the velocity calculation), the
longest the running time required.

4. Each PSOk version shows quite similar behavior in our experiments independently of the
swarm size, and independently of the problem dimension. This means that PSOk is hav-
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ing additional features making it scalable and resistent to constrained execution (memory-
restricted, at least).

5. In the scope of the extended benchmark with 40 functions used here, we can ensure that
our new variant, PSO6-Mtsls, statistically outperforms IPSO-Powell and G-CMA-ES, and
is better ranked than IACOr-Mtsls and IPSO-Mtsls. The local search method Mtsls (LS1)
seems to be responsible of the successful performance on non-separable and multimodal
functions, whereas the learning procedure of PSO6 takes mostly part in rotated ones.

In general, we can state that PSO is a first class optimizer able of the best performance in
present benchmarking for the continuous optimization.

As future work, we are interested in investigating other elemental features and learning pro-
cedures of the PSO algorithm, as well as to study other complementary methods to construct
satisfactory hybrid approaches, capable of solving highly complex functions. Besides, we plan
to perform analytical investigations on new benchmarks (BBOB, CEC’13, etc.) with different
function characteristics and dimensions.
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Chapter 8

Gene Selection in DNA
Microarrays

8.1 Introduction

In this chapter, we initiate a new part of this PhD Thesis in which our goal is to move apart from
academic benchmarking and solve actual real world complex problems. We plan to test PSO on
hard tasks with a clear real utility and real data. Despite this being an important goal, we must
notice that going real world is usually requiring that much effort that the contents of these chapters
are more balanced to the problem than to the algorithms. Our final aim is to step forward final
users and applications to avoid missing this perspective as it can be seen in many present research
works: we think this is an error and we want to learn from facing the problems themselves.

The problem addressed in this chapter is in the domain of Biology and Bioinformatics. The
importance of the research in Health is that vast in the world of today that we think it is worth
dedicating part of our efforts to at least one important problem. The selected one has been Feature
Selection in DNA Microarrays, an activity open to research and at the same time used in modern
hospitals for customized medicine.

DNA Microarrays ([PSS+94]) allow scientists to simultaneously analyze thousands of genes,
thus providing important insights about cells’ functions, since changes in the physiology of an
organism are generally associated with changes in large gene ensembles of expression patterns.
The vast amount of data that is involved in a typical Microarray experiment usually requires from
scientists to perform a complex statistical analysis, with the goal of classifying the dataset into
correct classes. The key issue in this classification is to identify significant and representative gene
subsets that may be later used to predict class membership for new external samples. Furthermore,
these subsets should be as small as possible in order to develop fast and low consuming processes
for future class prediction. The main difficulty in Microarray classification versus other domains
is the availability of a relatively small number of samples in comparison with the number of genes
in each sample. In addition, expression data are highly redundant and noisy, and most genes are
believed to be uninformative with respect to studied classes, as only a fraction of genes may present
distinct profiles for different classes of samples.

In this context, machine learning techniques have been applied to handle large and hetero-
geneous datasets, since they are able to isolate the useful information by rejecting redundan-
cies [RSA10, CW07]. Concretely, feature selection (gene selection in Biology) is often considered
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as a necessary preprocess step in analyzing large datasets, as this method can reduce the dimen-
sionality of the datasets and often results in better analyses [GWBV02, VLPD12, VH11].

Feature selection for gene expression analysis in cancer prediction often uses wrapper classifica-
tion methods [KJ98] to determine a type of tumor, to reduce the number of genes to investigate in
the case of a new patient, and also to assist in drug discovery and early diagnosis. Several classifi-
cation algorithms could be used for wrapper methods, such as K-Nearest Neighbor (K-NN) [FH51]
or Support Vector Machines (SVM) [CV95]. By defining clusters, a big reduction of the number
of considered genes and an improvement of the classification accuracy can be finally achieved.

Definition 8.1.1. Let F = {f1, ..., fi, ..., fn} be a set of features; find a subset F ′ ⊆ F that
maximizes a scoring function Θ : Γ→ G such that F ′ = argmaxG⊂Γ{Θ(G)}; where Γ is the space
of all possible feature subsets of F and G a subset of Γ.�

A formal definition of the feature selection problem is expressed in Definition 8.1.1. Optimal
feature selection is a complex problem proved to be NP-hard [NF77]. Therefore, we need efficient
automated approaches to tackle it. Metaheuristics algorithms have been shown to be adequate tools
for this matter, since they are capable of solving the feature selection accurately and efficiently
for the large dimensions needed in Biology. Evolutionary Algorithms (EAs) and, specifically,
Genetic Algorithms (GAs) have been successfully used in the past to tackle the gene selection of
Microarrays ([AGNJT07, HDH07, HDH06, JKCN05]). All these approaches consist in using single
population sequential algorithms which can achieve competitive performances (from the point of
view of the quality of solution), but without considering other important aspects such as the
computational effort and the time consumption.

Parallel metaheuristics have always been very popular in the literature [Alb05] and thus, there
exists a large number of implementations and algorithms. Concretely, population based algorithms
are naturally prone to parallelism, since most of their variation operators can be easily undertaken
in parallel. Besides the the numerical benefits [Alb05, AD08] spatial distribution of individuals
could induce to the learning procedure, the execution of many computational steps per time unit
offers an additional profit in reducing the computing time of such numerically enhanced structured
metaheuristics. Unfortunately, not much work has been done so far on parallel structured meta-
heuristics for feature selection [ZJP06], and no related approaches (to the best of our knowledge)
have been developed for gene selection of Microarray datasets.

In this chapter, a structured particle swarm optimization is used for gene selection of high
dimensional Microarrays datasets. The proposed algorithm, called Parallel Multi-Swarm Optimizer
(PMSO), consists in running a set of parallel subPSOs algorithms forming an island model, where
a migration operation exchanges solutions between those islands with a certain frequency. A
feature selection mechanism is embedded in each subPSO for finding small samples of informative
genes amongst thousands of them. The reported solutions, are then evaluated by means of their
classification accuracy by using a SVM classifier, performing 10-fold cross-validation and final
testing with external test datasets. As optimizer algorithm, we have decided to use the Geometric
PSO [MCP07] (GPSO) (described in Subsection 3.1.3 of Chapter 3) for binary search spaces. There
exists several binary PSO versions [KS98, Cle05, PFE05], although all of them consists of ad hoc
adaptations from the original one, and their performances are usually improvable. As evaluated
in [AGNJT07, GNA12a], the three-parent mask-based crossover (3PMBCX) used in GPSO makes
the offspring inherit the shared selected features present in the three parents involved in the mating,
hence making this operator especially suitable for the feature selection.

The contributions are noticeable, since the parallelization GPSO will be shown to improve
existing algorithms in terms of computational effort and classification accuracy. Besides, the gene
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ensembles found by this technique are successfully interpreted in the light of independent existing
results from Biology to show their actual impact. The effectiveness of our proposal is analyzed on
four well-known public datasets: Leukemia [GST+99], Colon [ABN+99], Lymphoma [Ali00] and
Lung [GJH+02], discovering new and biologically challenging gene subsets, and identifying specific
genes that our work suggests as significant ones. Comparisons with several recent state of art
methods will show the effectiveness of our results in terms of computational time/effort, reduction
percentage and classification rate.

We have organized this chapter as follows. In Section 8.2, we provide the reader with basic
concepts about Microarrays technology. Section 8.3 gives the details of our Parallel Multi-Swarm
Optimizer algorithm for feature selection. Experimental results and comparisons are presented in
Section 8.4, including performance analyses and biological validation of the obtained gene subsets.
Conclusions and further work are finally given in Section 8.5.

8.2 DNA Microarrays

A DNA Microarray consists of an arrayed series of thousands of DNA molecules spotted in different
positions in a matrix structure [PSS+94]. These DNA molecules, that correspond to particular
genes, are mixed with cellular cDNA molecules (called labeled or colored DNA) during a hybridiza-
tion process. A cDNA molecule is obtained from cellular RNA or mRNA during a labeling process
showing the relative expression level of each molecule. RNA molecules are isolated from a particular
cell type or tissue comprising of a complex mixture of different RNA transcripts. The abundances
of individual transcripts in the mixture reflect the different expression levels of the corresponding
genes. This process is called hybridization, after which abundant sequences will generate strong
signals, while rare sequences will generate weak signals.

Microarrays are normally used to compare gene expression levels within a sample or look at
differences in the expression of specific genes across different samples, such as a few samples of
one disease or healthy and unhealthy tissues. A gene expressed only in the disease sample, for
example, might represent a useful drug target. This is especially appropriate in cancer analysis,
since it allows us to discriminate against tumoral tissues and normal ones. Several gene expression
profiles obtained from tumors such as Leukemia, Colon, and Lung cancers have been published.

Algorithm 10 Pseudocode of PMSO

1: do in parallel for each i ∈ {1, ..., m}
2: Si ← initializeSwarm(Ssi)
3: while not stop condition do
4: iterate Si for n steps /* GPSO evolution */
5: for each Sj ∈ τ (Si) do
6: send ρ particles in φs(Si) to Sj

7: end for
8: for each Sj such that Si ∈ τ (Sj) do
9: receive ρ particles from Sj

10: replace ρ particles in Si according to φr

11: end for
12: end while
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Figure 8.1: General model of PMSO for gene selection and classification of Microarrays. Training,
validation, and testing mechanisms are embedded into the parallel algorithm

8.3 PMSO for Gene Selection

In analogy with Parallel Genetic Algorithms (PGAs) [AL05, SA12], we define our Parallel Multi-
Swarm GPSO (PMSO) as a pair 〈S,M〉, where S = {S1, ..., Sm} is a collection of m swarms (pop-
ulations) andM is the migration policy. The main parameters of the migration policy constitute
a five-tupleM = 〈σ, ρ, φs, φr, τ〉, where σ ∈ N (migration gap) denotes the number of iterations in
every subswarm between two successive exchanges of particles (steps of isolated evolution), ρ ∈ N

(migration rate) is the number of particle copies that undergo migration in each exchange; φs and
φr are two functions which respectively decide how to select emigrant particles and what particles
have to be replaced by incoming immigrants. The topology is denoted by τ : S → 2S , e. g., a
unidirectional ring, in our case. Algorithm 10 shows the pseudocode of PMSO.
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Two alternatives exist for φs: random and best. The first one refers to randomly selecting any
particle to be migrated; the second one selects the best-known particle in the island subswarm.
Concerning φr, also two strategies are considered always and if better. The former refers to always
replacing the worst particle(s) by the incoming emigrant(s); the later replaces the worst particle(s)
only if it is worse than the incoming emigrant(s).

Finally, concerning the topology (τ), a unidirectional ring is considered where each subswarm
sends (and receives) particles to (from) the two consecutive nearest subswarms in the ring. It must
be noted that the subswarms proceed asynchronously, giving rise to loosely coupled contiguous
epochs of computation and then communication. For this work, we have selected the asynchronous
version since it usually provides a better performance than the synchronous one [AT01].

Gene Selection and Classification Scheme

Following the basic scheme of solution encoding used in feature selection, PMSO provides a binary
encoded particle (vector) where each bit represents a gene in the dataset. If a bit is 1, it means that
this gene is kept in the reduced subset, while 0 indicates that the gene is not included. Therefore,
the particle length is equal to the number of genes in the initial Microarray dataset.

As illustrated in Figure 8.1, where a general model of our PMSO is provided, the particles of
each subswarm (Si), representing gene subsets, are evaluated by means of a SVM classifier and
10-fold cross-validation as follows: each gene subset (codified by a particle) is divided into ten
subsets, nine of them constituting the training set and the remaining one used as the validation
set. The SVM is trained using the training set and then the accuracy obtained (number of correct
classifications by the SVM once trained) is evaluated on the validation set [CV95]. This evaluation
is repeated ten times, each one alternating the used validation set. This method reinforces the
validation process, so that the final accuracy value is the resulting average of the ten validation
folds. Such a strong validation is necessary when the number of samples is low regarding the
number of features, which is the case for this work. As a final evaluation, the resulting subset
solution is evaluated on the external test set, thus obtaining the final accuracy (standard protocol
recommended in supervised learning).

Fitness Function

A fitness function is needed to guide the search by assigning to any tentative solution a quality
value. Once the accuracy value and the number of genes are known, the fitness function that we
propose is calculated according to the following:

f(x) = (100− acc) + λ ·
#(genes in subset)

#(total genes)
, (8.1)

being, λ = 10⌊log(#(total genes))+1⌋ (8.2)

The objective here consists of maximizing the accuracy and minimizing the number of genes.
For convenience (only minimization of fitness), the first factor is presented as (100− acc) and the
second one is normalized in order to control the trade off between these two factors. A constant
value λ (which depends on the total number of genes) is used in this normalization. Therefore,
if the number of features in the subset is high (with regards to the total number of genes in the
original dataset), then the fitness function promotes the reduction of features. Otherwise, if the
number of features in the subset is small, then this fitness function promotes the improvement in
accuracy.
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Table 8.1: Usage details of the four Microarray Datasets
Dataset #genes Classes #Train #Test #Total

Colon 2,000
Cancer 20 20 40
Normal 11 11 22

Lymphoma 4,026
Ac B-like 17 6 23
Ce B-like 19 5 24

Leukemia 7,129
AML 11 14 25
ALL 27 20 47

Lung 12,533
MPM 16 15 31

ADCA 16 134 150

8.4 Experimental Results

In this section, the experiments are described by first discussing the Microarrays datasets used,
then the experimentation setup, the analysis of results and comparisons, and a global discussion.
We have implemented the proposed PMSO algorithm for gene selection in C++ following the
skeleton architecture of the MALLBA library [ALGN+07]. For the SVM classifier we have used a
set of classes provided by the LIBSVM [CL02] library for training, validation, and testing. These
classes were coupled with those of the PMSO for this evaluation phase.

8.4.1 Microarray Datasets and Data Preprocessing

The instances used are classified into four well-known datasets taken from real-word Microarray
experiments. All of them were taken from the public repository of Kent Ridge Bio-medical Dataset
(http://datam.i2r.a-star.edu.sg/datasets/krbd/index.html). In particular:

• The ALL-AML Leukemia dataset consists of 72 Microarrays experiments with 7,129 gene ex-
pression levels. Two classes exist: Acute Myeloid Leukemia (AML) and Acute Lymphoblastic
Leukemia (ALL). The complete dataset contains 25 AML and 47 ALL samples. The original
dataset is divided into a training set of 38 samples and a test set of 34 samples.

• The Colon Tumor dataset consists of 62 Microarray experiments collected from colon-cancer
patients with 2,000 gene expression levels. Among them, 40 tumor biopsies are from tumors
and 22 (normal) are from healthy parts of the colon of the same patient.

• Types of Diffuse Large B-cell Lymphoma dataset consists of 47 tissue samples, 24 of them are
from germinal centre B-like group while the rest 23 are activated B-like group. Each sample
is described by 4,026 genes.

• The Lung Cancer dataset involves 181 experiments with 12,533 gene expression levels. Clas-
sification occurs between Malignant Pleural Meso-thelioma (MPM) and Adenocarcinoma
(ADCA) of the lung. In tissue samples there are 31 MPM and 150 ADCA.

Table 8.1 summarizes the original organization of training and testing samples of the four used
Microarrays. The test sets of Leukemia and Lung were taken from the original repositories provided
by the authors. In Colon and Lymphoma, only training sets are available in the original repositories,
and for this reason, new test and training sets have been here generated for these two datasets
by randomly (uniformly) extracting samples from the original one as stated in Table 8.1. These
datasets were selected because of their different dimensions and gene organizations, constituting a
heterogeneous test-bed to better support our conclusions.
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Figure 8.2: Plots of the different grid-search parameters evaluated in SVM for each dataset

Expression levels of training and test sets were normalized separately in order to scale their
intensities, thus enabling a fair comparison between the different datasets. Therefore, for each
attribute aj (gene) with j ∈ {1 · · ·#attributes}, and for each sample xk (expression) with k ∈
{1 · · ·#samples}, a scaling operation to [−1, 1] was performed resulting a′j(xk) by using the fol-
lowing equation (as LIBSVM recommends):

a′j(xk) = 2 ·
aj(xk)−minj

maxj −minj
− 1, (8.3)

where maxj and minj correspond to the maximum and minimum gene expression values for
attribute aj . Reductions of genes by removing them according to thresholds were not made previ-
ously, and so we make the task of correct classification harder by leaving even clearly non-functional
genes for the algorithm to remove. Uninformative genes to the classifier could nevertheless be in-
formative ones to the metaheuristic algorithm, since bad solutions are quite important to avoid
guiding the search towards low quality regions of the search space.

8.4.2 Experimental Settings

All experiments were carried out using a cluster of PCs with Linux O.S. (Suse 9.0 with kernel 2.4.19)
and a Pentium IV 2.8GHz processor, with 1GB of RAM. The PMSO algorithm was independently
executed 30 times on the Microarray datasets in order to have statistically meaningful conclusions.
Each one of these PMSO executions performed 500 iterations.
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In the parameters setup, an optimal configuration of the SVM classifier is crucial, since it
influences the training effectiveness. Therefore, the main Kernel (RBF) parameters γ and C coeffi-
cient [CV95], were systematically optimized (as recommended in LIBSVM [CL02]) in a preprocess
phase using grid-search with cross-validation. Basically, this consists in identifying the best com-
bination of both parameters in a rank of bounded values (for example, C = 2−5, 2−5, · · · 2−15, γ =
2−15, 2−13, · · · , 23). Figure 8.2 plots the traces of the different grid-search parameters for each
training dataset. The resulting parameters are :

• Leukemia: C = 8 and γ = 0.0001220703125 (accuracy = 92.0%)

• Colon: C = 128 and γ = 0.0001220703125 (accuracy = 82.5%)

• Lymphoma: C = 8 and γ = 0.000030517557 (accuracy = 94.0%)

• Lung: C = 2 and γ = 0.0001220703125 (accuracy = 93.0%)

These parameters were set using the SVM classifier independently of the PMSO, in order to
obtain an accuracy as higher as possible (as shown in parenthesis). The parameters of PMSO
were set using the previously tuned SVM classifier. Finally, after the PSMO executions, a testing
process was made on each resulted subset. In this process, the parameters of SVM were tuned
using the grid-search method for the resulting subsets and test sets separately.

Both sets of PMSO parameters, the ones defining the distributed model and those specific to
GPSO, were set according to a preliminary study. As a result of this study, our PMSO has been
run with the best configuration using 160 particles organized in 1, 2, 4 and 8 subswarms (with 160,
80, 40 and 20 particles each subswarm/processor), thus constituting four different configurations
regarding the number of subswarms. In these configurations, we have considered σ = 100 and
ρ = 1. The selection/replacement strategies choose respectively the best particle to be sent and
replaces if better. The migration topology is a unidirectional ring. Finally, concerning the GPSO
parameters, we have used similar present, historic, and social weights w1 = w2 = w3 = 0.33. The
probability of performing mutation is 0.01.

8.4.3 Performance Analysis

Table 8.2 shows the results obtained by PMSO, out of 30 independent runs, using the four different
configurations (number of swarms in column 2). As a robustness indicator, column 3 denotes the
number of executions in which the amount of genes (#Genes) in the resultant subset is lower
than 5 (very good result from a biological point of view). Following the standard methodology
when comparing classification rates, the average and standard deviation of the obtained accuracies
(Accuracy 1) and the number of genes are reported in columns 4 and 5, respectively. Column 6
shows the reduction percentage1 of each computed subset regarding the original datasets. In the
last column, the accuracy percentage (Accuracy 2) of the tuned stand-alone SVM on each complete
dataset (before reduction) is presented.

Several observations can be made from Table 8.2. First of all, the accuracy rate and the number
of genes obtained by PMSO with 8 swarms (8-Swarm PMSO) is the best in all the cases for each
dataset. This confirms that our parallel approach is clearly the way to go if a high accuracy and
computational effort are needed, which is the case in actual labs. Statistical differences were found
in these results regarding Colon, Lymphoma and Lung datasets. These differences in distributions

1 Reduction = 100 −
#(genes in subset)

#(total genes in dataset)
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Table 8.2: Results of PMSO using 1, 2, 4, and 8 subswarms’ configurations. Columns denote the
number of subswarms, the hit rate (expressed as subsets with less than 5 genes), the accuracy rate,
the number of genes, and the reduction percentage

Datasets Swarms (#Genes< 5) Accuracy 1 (%) #Genes Reduction (%) Accuracy 2 (%)

Colon

1 30 79.98±5.61 2.40±0.71 88

82.5
2 30 82.04±5.24 2.23±0.49 89
4 30 85.53±3.61 2.06±0.24 90
8 30 85.55±4.06 2.00±0.00 90

Lymphoma

1 22 96.94±3.32 4.06±1.15 90

92.0
2 24 96.75±2.87 3.60±1.08 92
4 28 97.12±2.72 3.23±0.76 92
8 30 97.87±2.56 2.86±0.49 93

Leukemia

1 30 98.00±2.21 3.00±0.74 96

94.0
2 24 98.00±2.60 4.00±0.92 95
4 28 98.00±2.54 3.00±0.88 96
8 28 98.00±1.85 3.00±0.77 96

Lung

1 30 96.00±3.69 3.00±0.63 98

93.0
2 30 97.39±3.13 2.63±0.70 98
4 30 97.00±3.17 2.66±0.64 98
8 30 97.39±1.99 2.26 ± 0.44 99

Figure 8.3: Mean performance of PMSO in four different swarm distributions: 1, 2, 4, and 8
subswarms. The mean fitness (in logarithmic scale) is plotted versus the number of iterations

(out of 30 independent runs) were statistically assessed by using the parametric/non-parametric
procedure as explained in Section 2.1.3 of Chapter 2. A confidence level of 95% (α = 0.05) was
always applied in order to check whether statistically differences can be found, or not.

Secondly, in comparison with the accuracy percentage (Accuracy 2) of the SVM on each com-
plete dataset, our results show better accuracy percentages in 14 out of 16 configurations. This
is a true improvement since the reduction of features in all the cases with regards to the origi-
nal datasets is around 90% in our model while SVM is using all genes. Specifically, our PMSO
with 4 and 8 swarms always obtains better accuracies (with subsets lower than 5 genes) than the
stand-alone SVM on the complete datasets.

When analyzing the internal behavior of these configurations of PMSO, we can clearly see that
the ones distributed with more subswarms (4 and 8) show a smoother convergence than the others
(i.e., diversity is better preserved). We suspect that the migration mechanism in PMSO introduces
also a high diversity which helps the initial exploration in all configurations. This behavior is
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Table 8.3: Mean time of execution in microseconds (ms) performed by our 8-Swarm PMSO running
on 1, 2, 4 and 8 processors

Dataset T1 T2 T4 T8

Colon 2.69E+09 1.42E+09 7.60E+08 5.28E+08
Leukemia 5.14E+09 2.83E+09 1.52E+09 1.05E+09
Lymphoma 3.05E+09 1.69E+09 8.80E+08 4.74E+08
Lung 7.64E+09 4.19E+09 2.38E+09 1.39E+09

clearly observable in Figure 8.3 where the mean performances through the evolution steps of 30
independent runs of each PMSO are plotted. In this figure, the lines represent the mean of the
fitness obtained by the subswarms at each iteration. For this reason, the lines corresponding to
PMSO with 4 and 8 subswarms show peaks that represent migrations injecting diversity in the
receptor swarm, hence altering the averages of the global evolution fitness. This beneficial behavior
is only slightly observed in PMSO with 2 subswarms, and non-existent in PMSO with 1 subswarm.

8.4.4 Speedup Analysis

One of the most important parameters for measuring the efficiency of a parallel algorithm is the
Speedup (Sp). The standard formula of the speedup is represented in Equation 8.4, where m is the
number or processors used, T1 is the mean time of execution of all the subswarms of the algorithm
in 1 processor, and Tm is the mean time of execution of the swarms in parallel on m processors.

Sp =
T1

Tm

(8.4)

Table 8.3 shows the mean time of execution in microseconds (ms) performed by our 8-Swarm
PMSO running on 1, 2, 4 and 8 processors. The most time consuming execution corresponds to
T1 in Lung dataset which takes about 2.12 hours (7.64E+09 ms). This time is reduced down to
23.16 minutes (1.39E+09 ms) when using 8 processors (T8) with the same dataset. Specifically, the
8-Swarm PMSO running on 8 processors obtains a reduction in the computational time of 69.8%
when dealing with Lung. This is a clear improvement concerning the time consumption since Lung
is the larger dataset we have tackled.

More precisely, in order to work with a measure proportional to the number of processors
employed we calculated the speedup using the execution times obtained. For this, we followed the
standard methodology described in [Alb02]. Figure 8.4 shows a graphical representation of the
speedup performed by our 8-Swarm PMSO algorithm executed in 1, 2, 4 and 8 parallel processors.
In this graphic, the linear speedup is represented by a dotted line. That is, a linear (ideal) speedup is
obtained when Sp = m, and hence, in the execution of an algorithm with linear speedup, doubling
the number of processors ideally means doubling the speed. The remaining lines represent the
speedup of the 8-Swarm PMSO on Leukemia, Colon, Lymphoma, and Lung datasets.

As we can observe in Figure 8.4, all the speedup values are close to the linear one, being all
of them higher than 5 when running in 8 processors. This way, the mean efficiency2 reported is
E = 70% for all datasets which is a very good value for facing still larger problems in the future.
The best efficiency is obtained when running in 4 processors being E = 85%. In short, our PMSO
provides an efficient outcome even in the presence of such a high dimensionality of the solutions
(from 2,000 to 12,533 genes), stating a low overhead of communications and thus being a globally
scalable technique.

2Mean efficiency E = Sp
m

× 100(%)
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Figure 8.4: Linear (ideal) speedup versus actual speedup of the 8-Swarm PMSO executed in 1, 2,
4 and 8 processors

Table 8.4: Comparison of PMSO versus PGA, both configured with 8 islands
Dataset Algorithm (#Genes≤5) Accuracy (%) #Genes

Colon
PMSO 30 85.55±4.06 2.00±0.00
PGA 30 81.45±4.22 2.10±0.30

Lymphoma
PMSO 30 97.87±2.56 2.86±0.49
PGA 30 94.44±3.72 3.60±1.28

Leuklemia
PMSO 28 98.00±1.85 3.00±0.77
PGA 30 98.55±1.55 3.15±0.85

Lung
PMSO 30 97.39±1.99 2.26±0.44
PGA 30 93.43±4.86 2.00±0.00

8.4.5 PMSO versus Parallel Island Genetic Algorithm

In this section, we compare the results obtained by our PMSO operating with 8 subswarms (8-
Swarm PMSO), against a Parallel Island Genetic Algorithm (PGA) [Alb05] also operating with 8
subpopulations. This way, we look to make a comparison not only versus the standard SVM but
also versus other parallel techniques popular in the literature.

The PGA has been configured as follows: the whole population consists of 160 individuals
(codifying gene subsets) organized in 8 subpopulations with 20 individuals each one. We have
considered σ = 100 and ρ = 1 (explained in Section 8.4.2). The selection/replacement strategies
choose, respectively, the best individual to be sent and replaces if better. The migration topology
is also a unidirectional ring. Finally, concerning the genetic algorithm parameters we have used
a generational strategy of reproduction (e.g. number of offspring equal to number of parents),
two-point crossover (probability of crossover 0.9), and simple bit-flip mutation (probability of
mutation 0.01) as applied to GPSO in Section 8.3. The evaluation task in PGA has followed the
same procedure as for PMSO. The evaluation task in PGA has followed the previously explained
parameter setting of SVM for classification, 10-fold cross-validation, and fitness function. A final
testing of the resultant subsets has been also accomplished.

The PGA was implemented in C++ using the MALLBA library. For the experiments, we have
used the same pool of machines as explained in Section 8.4.2. The PGA was executed 30 times,
each one of these executions performing 500 iterations.

Table 8.4 shows the results obtained by PGA together with those obtained by PMSO for each
dataset. Column 3 denotes the number of executions in which the amount of genes in the resulted
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Table 8.5: Comparison with six other works. Columns indicate the average of the accuracy and
the number of genes in the final subsets. The most accurate results are in boldface. Cells with
unavailable values are marked with “-”

Dataset Author
Accuracy

(#G≤5) (5<#G≤10) (#G>10)

Colon

[HDH07] - 91.20(8) -
[HDH06] - 99.41(10) -
[JKCN05] - - 94.12(37)
[LCJM04] 93.55(4) - -
8-S PMSO 87.61(3) 88.70(10) 94.22(20)

Lymphoma
[HDH07] 93.31(5) - -
[LI02] - - 90.00(13)
8-S PMSO 97.87(3) 96.48(10) 98.70(20)

Leukemia

[HDH07] 91.50(3) - -
[HDH06] - - 100(25)
[LCJM04] 87.55(4) - -
8-S PMSO 98.00(3) 96.31(10) 98.15(20)

Lung
[AGNJT07] 99.00(4) - -
[LCJM04] - 98.34(6) -
8-S PMSO 99.38(2) 99.47(10) 100(20)

subset is smaller than 5. The columns 4 and 5 indicate the average and standard deviation of the
accuracy rate and the number of genes in the final subsets, respectively. In bold we mark the most
accurate results. As we can observe, PMSO obtains higher percentages of accuracy than PGA in
Colon, Lymphoma and Lung datasets. These differences in accuracy have been statistically assessed
by using the same procedure explained in Section 8.4.3. For Leukemia dataset, the differences in
the results of PGA and PMSO are statistically negligible. Concerning the number of genes in the
resulting subsets, PMSO obtains the smaller subsets in Colon, Lymphoma, and Leukemia. Only
in Lung dataset, PMSO obtained slightly larger subsets than PGA which always obtained subsets
with 2 genes. In conclusion, we can state that PMSO performs better than PGA in the scope of
the problem datasets studied here.

8.4.6 PMSO versus Other Approaches

In our aim of providing a thorough assessment of our results, in this section we additionally
compare the results obtained by our PMSO operating with 8 subswarms (8-S PMSO) with six
other approaches found in the literature. We have to notice that this study is very heterogeneous
because other authors do not offer all the needed information and the algorithms are quite varied;
hence, an exhaustive comparison can not be made. However, a simple comparison with other
reported results is still useful.

The values are reported in Table 8.5, in terms of the average of the accuracy and the number
of genes in the final subsets. In order to provide a more understandable comparison, these results
are separated according to intervals of different numbers of genes (3 last columns). The accuracy
reported by the 8-Swarm PMSO correspond to subsets achieved with 20, 10, and ≤5 genes (#G).
We saved the subsets of genes generated with the specified lengths in each independent execution.
As we can see, for subsets with more than 10 genes, the accuracy rate reported by our 8-Swarm
PMSO is the best in 3 out of 4 datasets beating all the existing algorithms. In them, the only
worse accuracy value was found for the Leukemia dataset [HDH06] but our algorithm is finding
solutions with a lower number of genes. With the smaller subsets (≤5 genes), our approach reports
the highest accuracy in Lymphoma, Leukemia and Lung. For Colon, Liu et al. [LCJM04] reported
slightly higher accuracies than 8-Swarm PMSO, although with a larger number of genes. Finally,
with subsets of between 5 and 10 genes, our approach is the best in Lung, but with lower accuracy



CHAPTER 8. GENE SELECTION IN DNA MICROARRAYS 127

Table 8.6: Top 11 genes ranked by Golub et al. which were also obtained with PMSO on the
Leukemia dataset

Rank Index Accession Gene Description

1 4847 X95735 at Zyxin
5 1834 M23197 at CD33 antigen (differentiation antigen)
6 2020 M55150 at FAH Fumarylacetoacetate
8 3320 U50136 rna1 at Leukotriene C4 synthase (LTC4S) gene
15 4499 X70297 at CHRNA7 Cholinergic receptor, nicotinic, alpha polypeptide 7
14 2267 M81933 at CDC25A Cell division cycle 25A
16 5039 Y12670 at LEPR Leptin receptor
18 6376 M83652 s at PFC Properdin P factor, complement
20 6041 L09209 s at APLP2 Amyloid beta (A4) precursor-like protein 2
24 2354 M92287 at CCND3 Cyclin D3
28 461 D49950 at Liver mRNA for interferon-gamma inducing factor(IGIF)

than in Huerta et al. [HDH06] and in Hernandez et al. [HDH07] in Colon. Therefore, we can claim
that PMSO shows a competitive performance in comparison with state of the art algorithms.

8.4.7 Biological Analysis of the Results

In this section we provide a biological analysis of the computed gene subsets. Similar biological
studies have been carried out in relevant papers in the past [WZ07, DRIE+08]. Then we show
the broad impact of using PMSO, able to compute biological ensembles of genes that have been
independently suggested in the domain (e.g. [GST+99] and [Ali00]).

In Figure 8.5, a graphical distribution of the most frequently obtained genes in 30 independent
executions of the 8-Swarm PMSO are reported. We have used the Leukemia dataset, since it is
the one commonly studied by other related works in the literature. From this distribution, a brief
selection of the 11 most overlapped genes (the ones in bold with frequency ≥ 3 in Figure 8.5)
out of all the computed subsets, are described in Table 8.6. We can remark that all of these
genes were also reported in the list of the 30 most important genes (selected from 7,129 ones in
Leukemia) suggested in Golub et al. [GST+99]. Hence, we arrange the genes by means of the rank
assigned in the Golub et al. [GST+99] list (column 1 in the referenced table). This way, the gene
U50136 rna1 at that we obtained with frequency 7 was ranked in [GST+99] in eighth position.
Moreover, the first ranked gene (X95735 at Zyxin) in [GST+99], that we obtained with frequency
5, is the only gene that is capable of discerning between AML and ALL samples in just one split.

The genes reported in Figure 8.5 (in boldface) were also selected as the most informative genes
in recent specialized works. Concretely, in [DRIE+08] a Monte Carlo method was used for feature
selection and supervised classification on Leukemia and Lymphoma datasets. In [WZ07] a Nearest
Shrunken Centroid (NSC) was proposed to classify the Leukemia dataset. Both works considered
the genes X95735 at and M23197 at as the most important ones, which matches our main results.

Concerning the Lymphoma dataset, three of the most frequently selected genes by 8-Swarm
PMSO are: G1622X, G1618X and G2399X. These genes were also reported in the list of the 30
most important genes (selected from 4,026 ones in Lymphoma) suggested in Alizadeh et al. [Ali00].
Moreover, genes selected from Leukemia and from Lymphoma in this work have been validated
by means of the GO system3, finding in all of them associations from Human proteins. Therefore,
the selection of validated genes, also discovered in specialized publications in this area, leads us to
claim the great ability of our PMSO for selecting informative genes in actual DNA Microarrays.

3the Gene Ontology http://www.geneontology.org/
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Figure 8.5: Distribution of the most frequently genes obtained (in 30 independent runs) by our
8-S PMSO on the Leukemia dataset

8.5 Conclusions

In this chapter, a Parallel Multi-Swarm Optimizer (PMSO) algorithm is proposed for the first
time for gene selection of high dimensional Microarray datasets. PMSO has proven to be both
efficient and accurate. It is able to improve sequential algorithms, in terms of computational effort
(Efficiency of 85%). It has been experimentally assessed with different population structures on
four well-known cancer datasets, identifying specific genes that our work suggests as significant
ones. Concretely, with regard to the Leukemia and Lymphoma datasets, we could confirm that the
most frequently PMSO reported genes are also the most relevant genes suggested in the original
publications (Golub et al. and Alizadeh et al., respectively) concerning these Microarrays. Com-
parisons with several recent state of the art methods also show competitive results close to 100%
classification rate and very few genes per subset (4, 5 genes) obtained in 458 out of 480 (30× 16)
independent executions.

As for future work, we are interested in developing and testing several combinations of other
metaheuristics with classification methods in order to discover still unseen and better subsets
of genes using specific Microarray datasets. In this sense, the use of ensemble classifiers could
contribute notably to the DNA Microarrays analysis.



Chapter 9

Optimizing Software
Communication Protocols

9.1 Introduction

In this chapter we now go to a different field of real world applications, that of allowing new
services in smart cities by endowing cars with communication abilities to connect each other. The
very first problem in such a big endeavour (this will change our daily experience) is to make
the communication network exists. And this results only possible when the software protocols
allowing data exchange are optimized, since they standard configurations are unable to allow
smooth maintained communications between moving cars in a real city.

Vehicular Ad Hoc Networks (VANETs) [HFB07] are fluctuating networks composed of a set of
communicating vehicles (nodes) equipped with devices which are able to spontaneously intercon-
nect to each other without any pre-existing infrastructure. This means that no service provider is
present in such kind of networks, as it is usual in traditional or in mobile cellular communication
networks. The most popular wireless networking technology available nowadays for establishing
VANETs is the IEEE 802.11b WLAN, also known as WiFi (Wireless Fidelity). New standards
such as the IEEE 802.11p and WiFi Direct are promising but still no available to perform real
tests with them. This implies that vehicles communicate within a limited range while moving,
thus exhibiting a topology that may change quickly and in unpredictable ways. In such kind of
networks, previous to its deployment, it is crucial to provide the user with an optimal configuration
of the communication protocols in order to increase the effective data packet exchange, as well as
to reduce the transmission time and the network use (with their implications on higher bandwidth
and lower energy consumption). This is specially true in certain VANET scenarios (as shown in
Figure 9.1) in which buildings and distances discontinue communication channels frequently, and
where the available time for connecting to vehicles could be just one second.

The efficient protocol configuration for VANETs without using automatic intelligent design
tools is practically impossible because of the enormous number of possibilities. It is especially
difficult (e.g., for a network designer) when considering multiple design issues, such as highly
dynamic topologies and reduced coverage. In addition, the use of exact techniques is also imprac-
ticable due to the time spent during the great number of simulations required. All this motivated
us to use of metaheuristic algorithms, which arise as well-suited tools to solve this kind of problems.

129
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Figure 9.1: Typical urban VANET scenario. Circles represent the WiFi coverage of vehicles

In this chapter, we face the optimal File Transfer Protocol Configuration (FTPC) in VANETs
by means of a Particle Swarm Optimization approach. This problem lies in the core of any VANET
application, and thus optimal configuration is a major concern. We also use other four optimiza-
tion algorithms, since this is a new field and their relative advantages are still unclear. Indeed,
we can not find results for comparisons in the literature since only manual (human expert) VDTP
configurations were made so far. These algorithms are other swarm intelligence technique: Differ-
ential Evolution (DE); two evolutionary algorithms: Genetic Algorithm (GA) and Evolutionary
Strategy (ES); and a trajectory search technique, Simulated Annealing (SA). All these techniques
have been previously described in Chapters 2 and 3 of this thesis. We have chosen these algo-
rithms because they constitute a representative subset of well-known metaheuristics (population
and trajectory based algorithms), with suitable operators for real parameter optimization, and
with heterogeneous schemes of population and evolution. This way, we offer a set of initial results
allowing future comparisons with other modern and traditional techniques.

For our tests, two typical car-to-car environment instances have been defined: urban and
highway VANETs, both in special connection to the work done in the CARLINK CELTIC European
Project [car] for linking cars1. We rely both on a flexible simulation structure using ns-2 [ns2] (a
well-known realistic VANET simulator), and real tests for optimizing: the transmission time, the
number of lost packets, and the amount of data transferred. One additional contribution of this
work is to provide the specialist with a useful platform, embedded within ns-2, to configure network
protocols and hence obtaining a fair QoS control in VANETs.

The remaining of this chapter is organized as follows. In the next section, we briefly describe
the most relevant related works found in the current literature. In Section 9.3, we introduce the
Optimal File Transfer Configuration problem. In Section 9.4, the optimization strategy and fitness
function are described. Experimental results and comparisons are presented in Section 9.5, includ-
ing performance, scalability, and technical analyses of the resulted VANET protocol configurations.
Conclusions and future work are drawn in Section 9.6.

1CARLINK CELTIC European Project, in URL http://carlink.lcc.uma.es
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9.2 Literature Overview

Few related works can be found in the specialized literature concerning the use of metaheuristics
for the optimization of Mobile Ad Hoc Networks (MANETs). Vanhatupa et al. [VHH06] proposed
a flexible Genetic Algorithm for optimizing channel assignment in Mesh wireless networks. In that
work, the network capacity was increased by 20% while keeping the coverage above 80%. In Alba
et al. [ADL+07], a specialized cellular Multi-Objective Genetic Algorithm (cMOGA) was used for
finding an optimal broadcasting strategy in urban MANETs, obtaining in this case three objectives
fronts with coverage, bandwidth, and duration as performance metrics. The use of multi-objective
techniques in this kind of works provides the specialists with a range of non dominated solutions
which can help them in the decision making process. Nevertheless, the use of (mono-objective)
aggregated functions allows us the possibility of weighting the objectives and assign more (or less)
importance to them for better guiding the search. This way, in Dorronsoro et al. [DDBA08], six
versions of GAs (panmictic and decentralized) were evaluated and successfully used in the design
of ad hoc Injection Networks. From a different point of view, and due to its specific design,
Ant Colony Optimization (ACO) has been successfully adapted for implementing new routing
protocols for MANETs (Di Caro et al. [CDG05]), as well as for resource management (Chiang et
al. [CCAB07]). Nevertheless, in these two last cases, the routing load provoked by the internal
operations of ACOs makes these approaches unfeasible for large networks. More recently, Huang
et al. [HCH09] proposed a new routing protocol based on a PSO to make scheduling decisions for
reducing the packet loss rate in a theoretical VANET scenario.

In our work, besides of using the optimization technique itself as a protocol algorithm, our main
contribution consists of improving the performance of an existing protocol by optimally tuning its
parameters. In this way, we will hopefully obtain optimal configurations in the network design
phase without incorporating extra management load to the actual network operation. Following
this research line, we have to mention other recent studies performed in the scope of this thesis. In
these studies, standard routing protocols [GNTA10] AODV [GNA10] and OLSR [TGNA12] have
been optimally tuned with PSO, as well as other metaheuristics.

9.3 Problem Overview

The optimal File Transfer Configuration consists in optimizing the main parameters required by
an application communication protocol. This protocol, called VDTP (Vehicular Data Transfer
Protocol) [ATL06], operates on the transport layer protocols of VANETs, allowing the end-to-
end file transfer. This implies that, considerations about the multi-hop interconnection mode and
routing issues can be avoided, since they are carried out by the previous down layer protocols (e.g.
UDP, DSR, IP, etc.). Therefore, the different vehicles that constitute the nodes in a given VANET
can exchange complete files of information to each other by using VDTP.

9.3.1 Vehicular Data Transfer Protocol

VDTP is a connectionless protocol which operates on DSR [JMB01], a routing protocol for multi-
hop wireless ad hoc networks. In VDTP, the communication process is carried out by both a file
petitioner, which tries to download a file, and a file owner, which stores the file. This transfer
protocol operates by using the following packets: FIRQ (File Information Request), FIRP (File
Information Reply), DRQ (Data Request), and DRP (Data Reply). As shown in Figure 9.2 (a), once
the file petitioner knows the name and the location of a given file, it starts the communication by
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Figure 9.2: VDTP operation modes: (a) a complete file exchange is done; (b) timeout expiration
and retransmission; (c) communication refused

using the FIRQ packet in order to obtain the file size. Then, the petitioner waits for this information
which is sent by the owner by means of a FIRP packet. After receiving the information about the
file size, the petitioner computes the number of segments in which the file will be split, dividing the
file size by the chunk size. The petitioner starts the transfer by sending a DRQ(1) packet asking
for the first segment of the file; then it waits for the first data chunk sent by the owner which uses
the DRP(1) packet. This operation is repeated by both, petitioner and owner, until transferring
the last chunk DRP(n), and hence making up the complete file.

In VANETs, it is usual to work in a hostile medium which can provoke a high number of
lost packets during the communication process. In this sense, VDTP provides the specialist with
several mechanisms based on timers and counters, in order to solve such issues. The timeout
mechanism controls the waiting time until a concrete DRQ or FIRQ packet has to be resent
(retransmission time). Figure 9.2 (b) shows an example of how the DRQ and the DRP packets
are lost (and retransmitted) after an established timeout. The counter mechanism controls the
number of DRQ/FIRQ packets that have been resent. As shown in Figure 9.2 (c), after a previ-
ously specified number of retransmissions (total attempts) of the same DRQ/FIRQ packets, the
communication between the vehicles is refused.

Since we are interested in finding the best possible configuration of VDTP, we have focused on
the three aforementioned parameters: chunk size, retransmission time and number of total attempts.
Therefore, a given configuration (representing a solution of the problem) is a vector of three real
values (chunk size, total attempts and retransmission time). The range of each parameter is:

• chunk size: R+ ∈ [128 · · ·524, 288] bytes (524,288bytes = 512 Kbytes)

• total attempts : R+ ∈ [1 · · · 250] attempts

• retransmission time: R+ ∈ [1 · · · 10] seconds

These ranges were stated following the CARLINK consortium requirements for VANETs ap-
plications [car].
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Figure 9.3: Optimization strategy for VDTP configuration in VANETs. The algorithms invoke
the ns-2 simulator each solution evaluation

9.4 Optimization Strategy

Our optimization strategy for this problem is composed by basically two main parts: an optimiza-
tion algorithm and a simulation procedure. The optimization part is carried out (independently)
by our PSO (in this case Standard PSO 2007 [PCG11]), or by one of the selected metaheuristics.
All of them are specially adapted to find optimal (or quasi-optimal) solutions in continuous search
spaces (which is the case in this work). The simulation process is a way of assigning a quantitative
quality value to the factors regulating VDTP, thus leading to optimal configurations of this proto-
col tailored to a given scenario. This procedure is carried out by means of the ns-2 [ns2] simulator
in which we have implemented the VDTP protocol for sending files in VANETs.

For each optimization algorithm, the evaluation of solutions is carried out by means of the
simulation component. As Figure 9.3 illustrates, when a given algorithm generates a new solution
it is immediately used for configuring the VDTP. This configuration evaluates the quality of the
solution by using the received retransmission time, chunk size, and total number of attempts, as
explained in Section 9.3.1. Then, ns-2 is started and maps a given VANET scenario instance,
taking its time in evaluating the scenario with buildings, signal loss, obstacles, vehicles, speed,
covered area, etc., under the circumstances defined by the three control parameters optimized by
the algorithm. After the simulation, ns-2 returns the global information about the transmission
time required for sending the file, the number of lost packets generated during the simulation, and
the amount of data exchanged between vehicles. This information is used to compute the fitness
function.

Fitness Function. Since ns-2 operates by simulating (and averaging) many potential variations
scenario all fitting the actual vehicle system, there is a possibility of obtaining different fitness
values even using the same VDTP configuration (solution s). Therefore, in order to provide each
solution with a fitness value as reliable as possible, a single evaluation of one solution requires
N = 10 internal simulations, computing the global fitness (fitness(s)) as the mean of all ns-2
results (Equation 9.1).
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Figure 9.4: Selected area map of Malaga for our VANET instances. Urban and Highway areas are
enclosed by dotted lines

fitness(s) =
1

N

N∑

i=1

transmission timei(s) + lost packetsi(s)

log(data transferredi(s) + C)
(9.1)

In this equation, i ∈ [1 · · · 10] is the number of simulations per solution evaluation. The factor
C = 2 avoids division zero if there is no data transference, preventing a possible error in the fitness
calculation. The data transferred is presented in logarithmic scale in order to make up for the
difference in the range of values. This way, the algorithm looks for minimizing the global fitness2.

9.5 Experiments

We have used the C++ implementation of Standard PSO 2007, as well as the other four algorithms
provided by the MALLBA library [ALGN+07]. The simulation phase is carried out by running ns-2
simulator v-2.31 [ns2]. For the experiments, we have made 30 independent runs of each algorithm
on machines with Pentium IV 2.4 GHz core, 1 GB of RAM and O.S Linux Fedora core 6.

9.5.1 Instances: VANET Scenarios

We have created two simulation VANET scenarios (instances) from real urban and highway areas
of Malaga, Spain (selected areas in Figure 9.4). These instances have been generated following the
real tests carried out by experts in the scope of the CARLINK project, with the aim of obtaining
as different as possible conditions of speed, number of vehicles, obstacles, signal noise, network use,
etc. Therefore, we can analyze in both scenarios the behavior and performance of the compared
algorithms, as well as the differences in the resulting VDTP configurations in terms of communica-
tion efficiency. Furthermore, we can compare these automatically generated configurations against
the ones used in the real experiments by human experts in CARLINK [ATL08a, ATL08b].

2A multi-objective evaluation [Deb01] was not taken into account since objectives are not necessarily opposed
themselves.
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Table 9.1: VANET instances specification
Parameter Value
Propagation model Two Ray Ground
Carrier Frequency 2.472 GHz
Channel bandwidth 5.5 Mbps
Wifi Channel 13

Link Layer: transceiver
PROXIM ORiNOCO
PCMCIA (IEEE 802.11b)

Link Layer: antenna gain 7 dBi (Omnidirectional)
Mac protocol 802.11-b
Routing Protocol DSR
Transport Protocol UDP
Application Protocol VDTP
File transfers 20 sessions

• The Urban instance covers an area of 120,000 m2 including buildings and semaphores. We
have used VanetMobiSim[ATL07] for generating a realistic simulation mobility model where
vehicles move randomly according to real traffic rules. A number of 30 vehicles move with a
velocity between 30 km/h and 50 km/h, and 20 of them trying to send and receive a file of
1,024 kBytes.

• The Highway instance covers a stretch of 1 km with two directions without buildings and
semaphores. In this case, the absence of obstacles is made up for the handicap of the high
speed of vehicles, which also interferes the communication among vehicles. We have also used
VanetMobiSim[ATL07] for generating a realistic simulation mobility model where vehicles
move randomly according to real traffic rules. In the Highway VANET, a number of 30
vehicles move with a velocity between 80 km/h and 110 km/h, and 20 of them trying to send
and receive a file of 1,024 kBytes size.

The resulted communication environments of Urban and Highway instances, including direc-
tions and mobile nodes (vehicles), were mapped in the ns-2 simulator following the VANET spec-
ifications of devices and protocols3 summarized in Table 9.1. The ns-2 mobility trace definitions
for both instances are also publicly available4 .

9.5.2 Parameter Settings

In our experiments, all studied algorithms were configured in order to perform 1,000 solution
evaluations per run. At each one of these solution evaluations, ns-2 performs 10 independent
simulations of the target scenario with the same protocol configuration as stated in Section 9.4.
Therefore, all population based algorithms used here (PSO, DE, GA, and (µ, λ)-ES) were configured
with 20 individuals, performing 50 generational steps.

Table 9.2 summarizes the remaining parameters specific to each algorithm. In this table,
parameters corresponding to fitness values marked in bold were selected as the most accurate after
a set of initial tuning experiments, for the two instances. In these, a number of 5 combinations of
parameters per algorithm and VANET instance were tested performing 10 independent runs per
combination, hence resulting a number of 500 additional executions.

3DSR (Dynamic Source Routing), UDP (User Datagram Protocol), and VDTP (Vehicular File Transfer Protocol).
4Mobility traces in URL http://neo.lcc.uma.es/staff/jamal/portal/?q=content/malaga-scenario .

http://neo.lcc.uma.es/staff/jamal/portal/?q=content/malaga-scenario
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Table 9.2: Different combinations and results of the preliminary parameter tuning

Algorithm
Parameter Values
Instances Results
ϕ1 2.0 2.0 2.0 2.0 2.0

PSO

ϕ2 2.0 2.0 2.0 2.0 2.0
w 0.1 0.3 0.5 0.7 0.9
Urban 1.952 1.978 1.634 2.766 3.280
Highway 5.676 4.622 4.1761 5.283 6.045

DE

Cr 0.1 0.3 0.5 0.7 0.9
µ 0.9 0.7 0.5 0.3 0.1
Urban 4.027 2.647 2.241 1.866 1.742
Highway 7.255 5.622 4.776 4.734 4.663

GA

Pcros 0.2 0.4 0.6 0.8 1.0
Pmut 0.8 0.6 0.4 0.2 0.1
Urban 2.701 2.245 1.953 1.908 2.077
Highway 5.216 4.848 4.380 4.490 4.609

ES

Pcros 0.1 0.3 0.5 0.7 0.9
Pmut 0.9 0.7 0.5 0.3 0.1
Urban 4.920 3.878 3.031 2.606 2.151
Highway 7.836 6.877 6.240 5.783 5.923

SA

T 0.2 0.4 0.6 0.8 1.0
Urban 4.922 1.978 2.785 1.634 3.744
Highway 7.665 5.201 4.820 4.424 4.683

Table 9.3: Final fitness values with regards to Urban and Highway VANET scenarios. Columns 3
contains the mean and standard deviation (Std. Dev.) of the fitness values in 30 independent runs.
Columns 4, 5, and 6 show the minimum, median, and maximum values of fitness, respectively

Instance Algorithm Mean ± Std. Dev. Minimum Median Maximum
PSO 1.6346 ± 0.2899 0.9077 1.7809 1.8918
DE 1.7423 ± 0.3717 0.7389 1.8658 2.0228

Urban GA 1.9086 ± 0.2260 0.8799 1.9731 2.1614
ES 2.1517 ± 0.1266 1.8862 2.1222 2.4246
SA 2.7850 ± 0.8718 0.8730 2.1663 3.8025
PSO 4.1761 ± 0.2556 3.3301 4.2513 4.4554
DE 4.6631 ± 0.9328 2.7145 4.2272 7.0531

Highway GA 4.3805 ± 0.8695 2.5345 4.1918 5.8608
ES 5.7833 ± 0.9705 3.8836 6.1347 6.9421
SA 4.4246 ± 0.7401 3.1498 4.0855 5.7922

9.5.3 Results and Comparisons

In this section we present the results obtained by the five studied algorithms when solving the
optimal File Transfer Configuration (FTC) problem on VDTP. Table 9.3 shows the resulting fitness
values regarding the Urban and Highway VANET scenarios in terms of the mean, the standard
deviation, the minimum (best fitness), the median, and the maximum (worst fitness) found in 30
independent runs of every algorithm.

For the Urban scenario, we can observe in Table 9.3 that PSO obtained the best result in terms
of the mean fitness. This best mean value leads us to believe that using the PSO the resulting
VDTP ends in an efficient communication which is fast and accurate between vehicles. In addition,
the best median and maximum values were also obtained by PSO, although the best minimum (e.
g. the best VDTP configuration found for Urban) was reached by DE. This is an expected value,
since DE generally shows a pronounced exploitative behavior (using a parametrization close to the
standard one) [PSL05], while PSO tends to have an explorative performance using a high inertia
(as in this study w = 0.5) [ES00]. Similar results can be observed for the Highway scenario, in
which PSO obtained the best mean fitness value again. For this instance, PSO also showed the
lowest value of standard deviation. This implies a considerable advantage, since it provides our
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Table 9.4: Friedman’s and Wilcoxon’s Rankings (α = 0.05), with PSO as control algorithm

Algorithm
Urban Highway

Rank Wilcoxon’sp Rank Wilcoxon’sp
PSO 1.27 - 2.17 -
DE 1.83 0.047 3.67 0.001
GA 3.07 0.001 1.97 0.453
ES 4.33 0.001 4.97 0.001
SA 4.50 0.001 1.83 0.371

model with a high robustness, which is a crucial issue when designing VANETs. In terms of the
minimum fitness, GA and DE obtained the best VDTP configurations for the Highway scenario.
The worst configuration was obtained by ES.

In order to provide such comparison with statistical meaningful, we have applied a Signed
Rank test of Wilcoxon [Wil87] to the distributions of the aforementioned results. We have used
this non-parametric5 test with confidence level of 95% (p-value=0.05), which leads us to ensure
that these results are statistically different if they result in p-value<0.05. Table 9.4 contains the
resulted p-value of applying the Signed Rank test to PSO (the one with the best mean fitness) in
comparison with the remaining of algorithms, hence confirming the differences in results. As we
can observe in this table, PSO is statistically better than all compared algorithms for the Urban
instance. Only DE shows a p-value (0.047) close to 0.05, being lower in any case. Concerning the
Highway instance, PSO shows the best signed rank, although not far from GA and SA.

Additionally to Signed Rank test, a general comparison can be made using the Friedman [She07]
statistical test by means of which the algorithms are sorted in a ranked list. Table 9.4 also shows
the Friedman’s ranking (columns 2 and 4) of the compared algorithms in Urban and Highway
instances (the best ranked algorithm is in boldface). For Urban instance, PSO and DE are the
best ranked algorithms, while SA is the worst performing technique. Nevertheless, for Highway
scenario, SA obtains the best rank, whereas PSO is located in the third position.

Theses statistical results lead us to think that, in spite of the global best behavior of PSO,
the different requirements implicit to both instances implies that each algorithm can show quite
different results depending on the VANET scenario on which it operates. For example, DE shows
a competitive performance in Urban scenario whereas it is the second worst in Highway. The
opposite example can be observed in GA and SA which show weak results in Urban but highly
competitive ones in Highway. Therefore, the VANET designer can select the optimization model
more suited to his/her requirements, and choose the best option for each studied VANET scenario.

9.5.4 Performance Analysis

We present now a performance study which lying in analyzing the best fitness value resulted from
each function evaluation, during the whole evolution process of a given algorithm. Figure 9.5
illustrates the graphs of the best fitness values (communication cost) obtained through the median
execution in Urban and Highway instances.

We can observe in these two plots how PSO and DE tend to converge in the same range
of solution evaluations, although they could improved their fitness even in the final steps of the
evolution process. GA shows a similar trend as the former ones but it is subjected to an early
stagnation. Finally, the different behaviors observed in ES, and specifically in SA, for Urban

5The distributions violate the condition of normality required to apply parametric tests (Z Kolmogorov-Smirnov
= 0.009)



138 9.5. EXPERIMENTS

Median Performance - Urban Scenario
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Figure 9.5: Median performance in Urban and Highway scenarios

Table 9.5: Mean execution time (seconds) per independent run of each algorithm for Urban and
Highway scenarios

Instance Algorithm Tbest (seconds) Trun (seconds)
PSO 4.68E+03 7.95E+03
DE 4.37E+03 7.12E+03

Urban GA 3.48E+03 6.68E+03
ES 5.46E+03 9.00E+03
SA 2.18E+03 4.76E+03
PSO 1.39E+03 2.19E+03
DE 9.82E+02 2.10E+03

Highway GA 8.83E+02 1.56E+03
ES 9.84E+02 1.47E+03
SA 5.85E+02 8.45E+02

and Highway instances, confirm us the high dependency of these two algorithms to each different
VANET instance, meaning that they are not robust enough for this application.

Concerning the mean run time that each algorithm has spent in the experiments, Table 9.5
shows both, the mean time in which the best solution was found Tbest and the global mean run
time Trun, for Urban and Highway scenarios. In general, SA shows the shortest times to find the
best solution for the two VANET instances. We suspect that despite its temperature mechanism,
SA quickly falls in local optima hence obtaining weak results in Urban scenario. Nevertheless, this
behavior can be an advantage for Highway scenario where SA obtained accurate solutions with
a fast performance. As expected in PSO and DE, they have spent closed executions times for
the two VANET instances since they have similar internal operations. This resemblance in time
consumption was also registered in the two evolutionary algorithms, GA and ES.

As a summary, the algorithms use between 9.00E+03 and 4.76E+03 seconds for the Urban
scenario (150 and 80 minutes, respectively), and between 2.19E+03 and 8.45E+02 seconds for
Highway scenario (60 and 23 minutes, respectively). This relative low overhead in the protocol
design is completely justified by the subsequent benefits obtained in the global data transmission
time and loss of packets once the VANET is physically deployed as observed in the following
analysis.

9.5.5 Scalability Analysis

Once we have analyzed the performance of the five algorithms in two different VANET scenarios,
we study in this section how do various network sizes affect the performance of these optimization
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Figure 9.6: Three scaling urban areas from Malaga. Each area is a separate VANET instance

Table 9.6: Performance comparison in terms of mean fitness and mean optimization time (Tbest)
of the three scaled Urban VANETs

Algorithm
Mean Fitness Tbest

UrbanA1 UrbanA2 UrbanA3 UrbanA1 UrbanA2 UrbanA3

PSO 1.6346±0.2899 1.3920±0.2831 3.6763±0.4435 7.95E+03 5.93E+03 1.20E+04
DE 1.7423 ± 0.3717 1.4504± 0.1885 3.9186± 0.7419 7.12E+03 1.10E+04 1.43E+04
GA 1.9086 ± 0.2260 1.4100± 0.1235 3.6829± 0.5063 6.68E+03 9.81E+03 1.41E+04
ES 2.1517 ± 0.1266 1.5462± 0.6023 3.7799± 0.6227 9.00E+03 8.99E+03 1.50E+04
SA 2.7850 ± 0.8718 2.3880± 1.0207 3.8143± 0.1260 4.76E+03 3.40E+03 5.36E+03

techniques. For this purpose, we have generated two new VANET instances from the initial Urban
scenario (of Malaga) by enlarging the metropolitan area considered. Therefore, as Figure 9.6 shows,
the initial urban area (A1) has been expanded to A2 and A3 VANET areas. We have set the traffic
flow as described in Section 9.5.1, also increasing the number of vehicles as follows:

• UrbanA1 with 30 vehicles in 120,000 m2,

• UrbanA2 with 40 vehicles in 240,000 m2,

• UrbanA3 with 50 vehicles in 360,000 m2.

From the point of view of the mean fitness obtained by each algorithm (out of 30 independent
runs), we can observe in Table 9.6 that PSO keeps the best performance for UrbanA2 and UrbanA3.
Although, one of the most interesting results can be observed in GA, which arises as the second
best algorithm in improving its behavior with the VANET size. ES obtains moderate mean fitness
values for all network instances, keeping a low standard deviation. The worst results are registered
by SA in UrbanA2, and DE in UrbanA3. Concerning DE, the initial choice of its parameters
(Cr=0.9 and µ = 0.1) could lead the algorithm to perform an exploitative search, hence obtaining
good results in small instances (the second best for UrbanA1) but damaging its behavior in larger
VANETs (the worst for UrbanA3). In summary, excepting for GA and DE, we can confirm that for
the scaled VANET instances the performance of the algorithms are similar to their performances
in UrbanA1 (the initial Urban VANET instance) being PSO always the best procedure.
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Table 9.7: VDTP configurations and simulation output values for the optimal fitness achieved (in
the median execution) by all studied algorithms. The last row contains the results obtained in the
scope of the CARLINK project

Instance Algorithm
VDTP Configuration Simulation Results

Chunk S. Retrans. Time Att.s Trans. Time Lost Packs. Data Trans.
(Bytes) (seconds) (seconds) (kBytes)

PSO 41,358 10.00 3 3.41 0.27 1,024
DE 28,278 6.00 9 3.59 0.63 1,024

Urban GA 31,196 3.83 9 3.61 0.27 1,024
ES 23,433 10.00 8 3.50 0.27 1,024
SA 19,756 6.43 3 4.22 0.36 1,024
Human Exp. 25,600 8.00 8 4.24 1.60 1,024
PSO 29,257 6.42 9 24.67 3.18 1,024
DE 19,810 6.91 8 27.66 3.45 1,024

Highway GA 34,542 9.54 10 26.96 2.72 1,024
ES 38,490 8.15 12 33.99 3.36 1,024
SA 32,002 8.21 4 25.43 2.54 1,024
Human Exp. 25,600 10.00 10 33.08 3.27 1,024

A secondary but also interesting observation lies in the mean fitness values, which are in
UrbanA2 lower than in UrbanA1. We suspect that, in spite of the larger dimension of UrbanA2,
the proportion of communicating vehicles (per m2) in this VANET helps the protocol operation
specially for intermediate nodes, hence improving the effective ratio of delivery packets and the
overall retransmission time. This proportion could not be enough for UrbanA3 where the cost of
transmissions is the larger one.

Concerning the execution time, Table 9.6 shows in the three last columns the time required to
find the best solution (Tbest) for each VANET instance. Surprisingly, for PSO, ES, and SA the time
required to converge in UrbanA2 is lower than in UrbanA1. This behavior can be explained by the
fact of obtaining good solutions faster in UrbanA2 than in UrbanA1, where the lower number of
vehicles could harm the communications conditions. On the contrary, the global run time (Trun)
always increases with the network size. This is of course an expected result.

9.5.6 QoS Analysis

Finally, from the point of view of the worked solutions as VDTP configurations, we analyze the
results in terms of the QoS indicators considered here: the transmission time, the number of
lost packets, and the amount of data transferred induced in the designed VANET. In this sense,
Table 9.7 shows the results after simulating the best solutions found by the studied algorithms. In
addition, the last row of this table contains the results of simulating the configuration of VDTP
that has been used in the scope of the CARLINK project (real word results with actual cars).

For the Urban VANET, the VDTP configuration obtained by PSO (Chunk Size=41,358 Bytes,
Retransmission Time=10 s, and number of Attempts=3) achieves the best performance in terms
of transmission time and mean number of lost packets. Specifically, in comparison with the human
experts configuration of CARLINK, PSO obtains a reduction in the transmission time of 0.83
seconds (19.5%) registering also a lower number of lost packets. Nevertheless, it is in the Highway
scenario were PSO obtains the higher time reduction of 8.41 seconds (25%) regarding the human
experts configuration (from 33.08 s to 24.67 s). We must notice that, in spite of achieving the PSO
a higher reduction in the transmission time than SA and GA, the fact of losing more packets (3.18
in PSO, 2.71 in GA and 2.54 in SA) in the global transference leads SA and GA to calculate a
better fitness value (as shown in Table 9.3).
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Figure 9.7: Effective transmission data rates (Throughput in kBytes/s) achieved during the simu-
lations of final VDTP configurations in comparison with real values given by human experts’ ones
(CARLINK)

A final analysis can be done concerning one main QoS indicator: the effective transmission data
rate (throughput)6 achieved. As we can observe in Figure 9.7, the VDTP configuration obtained by
practically all algorithms in the two VANET scenarios obtained higher effective data rates than the
human configured VDTP. Specifically, PSO achieves the highest effective data rate (300.29 kBytes/s
in Urban and 41.54 kBytes/s in Highway). This clearly claims for the utilization of these automatic
algorithms to help human designers. We again remind that the actual correction of effective data
rates between cars are in the order of tens of kBytes/s, so our savings (58.79 kBytes/s in Urban
and 10.5 kBytes/s in Highway) are truly meaningful in current real applications such e.g. safety,
traffic control, and weather predictions.

9.6 Conclusions

In this chapter, we have tackle the optimal File Transfer protocol Configuration (FTC) in VANETs
by means of PSO, as well as other four popular metaheuristic algorithms. For this, we have
designed a complex system accounting for a flexible simulation structure targeted for optimizing
the transmission time, the number of lost packets, and the amount of data transferred in simulated
and also realistic VANET scenarios.

The experiments, using ns-2 (well-known VANET simulator), reveal that all algorithms are
capable of efficiently solve the optimum FTC problem. Nevertheless, we have to highlight that
PSO performs statistically better than all algorithms in Urban and statistically better than DE
and ES in Highway. In addition, GA and SA show a competitive performance in Highway. The
scalability analysis shows that GA improves with the network size, whereas DE decreases its
performance with large VANET instances. PSO keeps the best result even for larger instances.

From the point of view of its real world utilization, PSO can reduce 19% of the transmission
time in Urban and 25.43% in Highway with regards to human experts configuration of CARLINK,
while transmitting the same amount of data (1,024 kBytes). The highest effective data rates

6In our fitness function, instead of using the throughput as extra control parameter, we have broken down it
into the transmission time and data transferred directly in order to count them separately and enhance the search
process of the algorithms.
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obtained by PSO (of 300.39 kBytes/s in comparison with 241.5 kBytes/s of human experts) and
DE (292.57 kBytes/s) in Urban lead us to advise the final use of our automatic design algorithms.

As a matter of further work we are presently extending our benchmark with new VANET
realistic instances (e.g., complete cities and highway knots). In addition, we are planning to define
new optimized configuration schemes for other communication protocols such as: UDP, DSR, etc.
which should efficiently support actual VANET design.



Chapter 10

Optimal Signal Light Timing

10.1 Introduction

We now here go for our third real world problem addressed with techniques based in PSO and its
swarm intelligence kind of search.

Pollution, congestion, security, parking, and many other problems derived from vehicular
traffic are present every day in most cities around the world. Since changes in urban area in-
frastructure are usually not possible, researchers often agree in that a correct staging of signal
(traffic) lights can help to reduce these problems by improving the flow of vehicles through the
cities [MM10], [SGR08], [SC97]. Nevertheless, as signal lights are installed in cities and their
number grows, their joint programming becomes more complex due to the huge number of com-
binations that appear, and hence, the necessity of automatic systems to optimally program the
cycles of signal lights is beyond doubt.

In this sense, current research efforts in the field of automatic traffic control signals are directed
to two main initiatives: on the one hand, automatic models of adaptation of signal control are
designed [BHR96, HB01, ZDZ12] to change cycle program durations in every moment of the day
as vehicles in queues demand those changes. The operation of these kind of tools is directly related
to the sensor system and real time computation of traffic flow in real time. Although these tools
demonstrate a successful performance in several cities around the world [BHR96, Bin01], the real
management of the traffic network has a high cost of operation, although “real world” generally
tends to repeat traffic flow patterns (rush hour, holidays, etc.).

On the other hand, modern simulators [HR04, KD10, LKH01] are very useful in helping the
traffic management, since they provide researchers with an immediate and continuous source of
information about the traffic flow. In addition, economical issues are also taken into account in
these kinds of researches, since the use of real traffic tests implies the necessity of additional staff
and sensoring platforms. Many studies in traffic flow simulation have been performed representing
both macroscopic [MM10] and microscopic [SGR08], [TLTM05] traffic views. In the last few years,
efforts have been concentrated on combining an accurate microscopic modeling [KD10], [SGR08]
and the programming of convenient cycles [Nag10]. In this sense, the use of intelligent methods have
demonstrated their usefulness to the optimization of programming cycles [ARG+08], [SGR08].
However, authors in general have addressed specific urban areas with few intersections and a
small number of signal lights (from 1 to 4 intersections with around 2 signal lights controlling
each intersection) [BBSS01], and most of them consist on ad-hoc approaches only for one specific
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instance [ARG+08], [SGR08]. The use of intelligent techniques for large and heterogeneous cases
of study is still an open issue [Kut04]. It is a complex problem, since the greater the number of
adjacent intersections, the higher the interaction between the signal lights, which increases the
complexity of the problem by introducing a high epistasis between variables.

All this motivated us to propose a technique based on a Particle Swarm Optimizer [PCG11,
KE01, GNAO12] that will be shown to find successful cycle programs of signal lights coupled
with SUMO (Simulator of Urban Mobility) [KBW06], a well-known microscopic traffic simulator.
Several features led us to use PSO instead of other optimization techniques: first, the PSO is a
well-known algorithm shown to perform a fast converge to suitable solutions [Cle99]. This is a
highly desirable property for the optimal cycle programming, where new immediate signal light
schedules could be required to address updating events in traffic scenarios. Second, PSO is easy to
implement, and requires few tuning parameters [Cle99]. Third, PSO is a kind of Swarm Intelligence
algorithm that can inform us of future issues when dealing with this problem using independent
agents in the system for online adaptation (a future line for us).

The task of SUMO is the evaluation of cycle programs (codified as vectors provided by our
PSO) of the signal lights that control the scenario instance. In the present study, we have tested
our proposal with two large and heterogeneous metropolitan areas with hundreds of signal lights
located in the cities of Bah́ıa Blanca in Argentina, and Malaga in Spain. In concrete, the main
contributions that we can highlight in this chapter are the following ones:

• We propose a new PSO approach capable of obtaining efficient cycle programs for realistic
urban scenarios. In this new approach, the initialization method, the solution encoding, the
fitness function, and the velocity calculation have been adapted to deal with optimal cycle
programs of signal lights.

• The behavior of our proposal is analyzed under different conditions of road network dimension
and traffic density. An analysis of the computational effort is also made.

• In comparison with predefined cycle programs close to real ones, our PSO obtains quantitative
improvements in terms of the two main objectives: the number of vehicles that reach their
destinations and the global trip time.

• Further comparisons against other optimization methods (Random Search, Differential Evo-
lution, and Standard PSO 2011) will justify the use of our PSO for the problem tackled.

The remainder of this chapter is organized as follows. In Section 10.2, a review of related works
in the literature is presented. In Section 10.3, basic concepts of SUMO are given. In Section 10.4,
our optimization technique proposal is described. Sections 10.5 and 10.6 present the experimental
methodology used and the results obtained, respectively. Conclusions and future work are given
in Section 10.7.

10.2 Literature Overview

There are different approaches in the state of the art that deal with signal light staging prob-
lems.Adaptive signal lights consider the “real” time impact of the traffic cycle duration over the
traffic network. Several efforts have been done in this sense, mainly focused on use of detectors to
sense the traffic and to change the duration of cycle programs, taking into account the actual flow
of vehicles [BHR96, HB01, ZDZ12].
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In this sense, several research studies employ a fuzzy part inside the intersection system con-
trol generally combined with other computational intelligence technique or heuristic [SCC06].
In [GS10], the authors adopted type-2 fuzzy set and designed a distributed multi-agent traffic-
responsive signal control system. This system was tested on virtual road networks with several
scenarios. Results showed superior performance of the approach in handling unplanned and planned
incidents and obstructions. An adaptive traffic control model of signal lights is introduced by
Bretherton et. al [BHR96] consisting on the SCOOT (Split Cycle Offset Optimization Technique)
platform. SCOOT is an adaptive system for managing and controlling traffic signals in urban area,
that responds automatically to fluctuations in traffic flow through the use of detectors on-street.
This tool is especially useful for areas where traffic patterns are unpredictable.

Another adaptive method is UTOPIA (Urban Traffic Optimization by Integrated Automation)
/ SPOT (System for Priority and Optimization of Traffic) designed and developed by the FIAT
Research Center [Woo93]. This system is aimed at improving both, private and public transport
vehicles flow. UTOPIA/SPOT is a distributed real-time traffic-control system, especially suited for
countries with advanced public transport services (tested in Italy, Norway, Netherlands, Sweden,
Finland and Denmark). This system uses a hierarchical-decentralized control strategy, involving
intelligent controllers to communicate with other signal controllers and with a central computer.

Different authors analyzed the use of fuzzy logic controllers at intersections of streets for adap-
tive tools. In an early study, Lim et al. [LKH01] proposed a fuzzy logic controller for real-time
local optimization of only one intersection. Later, in Karakuzu et al. [KD10] a traffic simulator
using fuzzy logic agents was developed for signal lights at isolated junctions. The results showed
a minimization of the queue of vehicles on the roads, however their implementation is very com-
promised from an economic point of view, and the system’s deployment required a great inversion.
Other authors applying fuzzy logic were Rahman and Ratrout [RR09], with satisfactory results
in a segment of the King Abdullah road in Saudi Arabia. The scenario shown in that paper was
composed of four intersections and two signal lights for each one. An exhaustive review about
automatic adaptive systems can be found in [HB01] and [ZDZ12].

Concerning the optimization strategy, we can find publications in which different resolution
techniques have been applied: mathematic models, fuzzy logic approaches, and biologically inspired
optimizers. Several authors employed mathematic techniques for tackling this kind of problem. For
example, McCrea et al. [MM10] combined continuous calculus based models and knowledge-based
models in order to describe the traffic flow in road networks. Tolba et al. [TLTM05] introduced a
Petri Net based model to represent the traffic flow, from a macroscopic point of view (where only
global variables are observed) and from a microscopic one (where the individual trajectories of
vehicles are considered). More recently, Lammer and Helbing [LH08] designed a multi-agent traffic
model inspired by the self-organizing fluctuations of vehicles in traffic jams. They used a simplistic
simulation model considering only one direction of movement at a time. In Hawage et al. [HR04],
the authors proposed a special-purpose simulation tool for optimizing traffic signal light timing.
This tool provided complete traffic information, although it was limited to work only with four
intersections.

Recently, biologically inspired techniques like Cellular Automata (CA) and Neural Networks
(NN) have been used for tackling the underlying combinatorial optimization problems, and in
particular for solving signal light staging problems. Brockfeld et al. [BBSS01] applied a CA model
in which the city network was implemented as a simple square with a few normal streets and four
intersections. Spall and Chin [SC97] presented a Neural Network for the configuration of control
parameters in signal lights. In this approach, the vehicles needed an additional module for the
data managing.
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Related to the previous ones, metaheuristic algorithms [BR03] have become very popular for
solving signal light staging problems. A first attempt was made by Rouphail et al. [RPS00], where
a Genetic Algorithm (GA) was coupled with the CORSIM [HTSL07] microsimulator for the timing
optimization of nine intersections in the city of Chicago (USA). The results, in terms of total queue
size, were limited due to the delayed convergence behavior of the GA.

In Teklu et al. [TSW07], the impact of signal time changes with respect to the drivers was
analyzed. More precisely, the authors considered the problem of determining optimum signal
timings while anticipating the responses of drivers as an instance of the network design problem
(NDP). An NDP aims to improve an existing network so that some total network performance
measure is optimized with respect to some discrete or continuous design variables, while considering
the user’s reaction to the improvement. In order to solve the traffic equilibrium problem they
used the SATURN (Simulation-Assignment Modeling package, [VV82]). The authors applied a
macroscopic point of view of the traffic flow and employed a GA to compute the signal setting
NDP (cycle time, offset, and green light times for stages). It is important to note that, the
chromosome (grey-code) encoding was done differently for each particular instance under study.

In Sánchez et al. [SGR08], following the model proposed in Brockfeld et al. [BBSS01], the
authors designed a GA with the objective of optimizing the cycle programming of signal lights.
This GA was tested in a commercial area in the city of Santa Cruz de Tenerife (Spain). In this
work, they considered that every intersection had independent cycles. As individual encoding,
they used a similar binary (grey-code) representation to the one used in Teklu et al. [TSW07]. The
computation of valid states was done before the algorithm began, and it strongly depended on the
scenario instance tackled.

Turky et al. [TAYH09] used a GA to improve the performance of signal lights and pedestrians
crossing control in a unique intersection with four-way two-lane. The algorithm solved the lim-
itations of traditional fixed-time control for passing vehicles and pedestrians, and it employed a
dynamic control system to monitor two sets of parameters.

A few publications related to the application of PSO for the schedule of signal lights also exist.
In [CX06], authors applied a PSO for training a fuzzy logic controller located in each intersection
by determining the effective time of green for each phase of the signal lights. A very simple network
with two basic junctions was used for testing this PSO. Peng et al. [PWDL09] presented a PSO
with isolation niches to the schedule of signal lights. In this approach, a custom microscopic view
of the traffic flow was proposed for the evaluation of the solutions. A purely academic instance
with a restrictive one-way road with two intersections was used to test the PSO. Nevertheless, this
last study focused on the capacity of isolation niches to maintain the diversity of the swarm, and
was not very concerned with the problem itself.

Finally, in Kachroudi and Bhouri [KB09] a multi-objective version of PSO is applied for op-
timizing cycle programs using a predictive model control based on a public transport progression
model. In this work, private and public vehicles’ models are used performing simulations on a vir-
tual urban road network made up of 16 intersections intersections and 51 links. Each intersection
is then controlled by a signal light with the same cycle time of 80 seconds.

All these approaches focused on different aspects of the signal light programming. However,
three common features (limitations) can be found in all of them:

• They tackled limited vehicular networks with a few signal lights and a small number of
other traffic elements (roads, intersections, directions, etc.). In contrast, our PSO can find
optimized cycle programs for large scenarios with hundreds of signal lights, vehicles, and
other elements.
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• Almost all of them were designed for only one specific scenario. Some of them studied the
influence of the traffic density. Our approach can be easily adapted to represent different
scenario topologies. In this present study, we tackle two real scenarios with different combi-
nations of signal lights and vehicles, fixing a number of 18 instances.

• They were not compared against other techniques. Our PSO is compared here against four
different approaches: a Random Search algorithm, a Differential Evolution, the Standard
PSO 2011, and the cycle program generator provided by SUMO.

10.3 SUMO: Simulator of Urban MObility

SUMO (Simulator of Urban Mobility) [KBW06], is a well-known traffic simulator that provides an
open source, highly portable, and microscopic road traffic simulation tool designed to handle large
road scenarios. SUMO requires several input files that contain information about the traffic and
the streets to simulate. A network (.net.xml file) holds the information about the structure of the
map: nodes, edges, and connections between them. The network can be imported from popular
digital maps such as OpenStreetMap [HW08] and converted to a valid SUMO network by means of
a series of scripts provided in the SUMO package. We have chosen OpenStreetMap (OSM) because
it provides both, geographic data and signal light information.

A journey is a vehicle movement from one location to another defined by: the starting edge
(street), the destination edge, and the departure time. A route is an extended journey, meaning
that, a route definition contains not only the first and the last edges, but also all the edges the
vehicle will pass through. These routes are stored in a demand file (.rou.xml file) either through
a route generator given by SUMO, existing routes imported from other software, or by hand.
Additional files (.add.xml) can add to SUMO information about the map or about the signal
lights. SUMO allows to replace and edit information on the cycles of signal lights by manipulating
a file with .add.xml extension. It is important to note that SUMO provides by default the valid
combination of states that the signal lights controller can go through inside the map specification
file (.net.xml file) [KBW06], and an approximation of interval times for these states [LKA04]. This
means that SUMO already incorporates a solver algorithm for the cycle program of signal lights
based on greedy and human knowledge. That solver will be called here SCPG (SUMO Cycle
Program Generator) and it will be used in a comparison against our PSO.

The output of a SUMO simulation is registered in a trip information file (.tripinfo.xml) that
contains information about each vehicle’s departure time, the time the vehicle waited to start at
(offset), the time the vehicle has arrived, the duration of its journey, and the number of steps in
which the vehicle speed was below 0.1m/s (temporal stops in driving). This information is used
for the evaluation of cycle programs of signal lights.

10.3.1 SUMO Data Structure

As previously mentioned, the main objective of our approach is to find optimized cycle programs
(duration of color states of signal lights) for all the signal lights located in a given urban area.
At the same time, these programs have to coordinate signal lights in adjacent intersections with
the aim of improving the global flow of vehicles circulating within the established routes. For this
reason, we have focused on a microscopic view of the management of traffic agents but, at the same
time, we want to evaluate the behavior of all the vehicles in the complete urban scenario during a
given time span.
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<additional>

...

<tl-logic id=“i-1" type="static“ programID="1" offset="0">

…

<tl-logic id=“i" type="static“ programID="1" offset="0">

<phase duration="40" state="GGr r"/>

<phase duration="5" state="yyrr"/>

<phase duration="40" state="rrGG"/>

<phase duration="10" state="rryy"/>

</tl-logic>

<tl-logic id=“i+1" type="static“ programID="1" offset="0">

<phase duration=“36" state="GGr rGG"/>

<phase duration=“6" state="yyrrGG"/>

<phase duration=“22" state="rrGGyy"/>

…

...

</additional>

Instance.add.xml

… … … … … … 40 5 40 10 36 6 22 … … … … … … …
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Figure 10.1: Intersection with four signal lights selected from the SUMO instance map. Phase
durations (cycles) are specified in Instance.add.xml file and encoded inside a PSO tentative solution

The evaluation of the resulting signal light timing programs is carried out by means of automatic
simulations. For this task we use SUMO. The simulation structure of SUMO is comprised of a
series of elements that we have taken into account for developing our traffic scenarios. A SUMO
instance for a urban traffic scenario is basically composed of: intersections, signal lights, roads,
and vehicles moving through their previously specified routes. The signal lights are located in
intersections (junctions in SUMO), and control the flow of vehicles by following their programs of
color states and cycle durations. In this context, all signal lights located in the same intersection
are governed by a common program, since they have to be necessarily synchronized for traffic
security. In addition, for all the signal lights in an intersection, the combination of color states
during a cycle period is always kept valid [LKA04] and must follow the specific traffic rules of
intersections, in order to avoid vehicle collisions and accidents. For example, two signal lights
located in the same intersection but controlling conflicting movements must not be in green during
the same time instance. In this sense, as illustrated in Figure 10.1, SUMO provides a complete set
of valid combinations of color states for each intersection, which can not be modified during the
optimization process. This avoids invalid combinations of color states and restricts the optimization
approach to work only with feasible states.

Figure 10.1 shows an illustration of the main elements constituting the cycle program of signal
lights in SUMO. This program staging is implemented in an XML file (instance.add.xml) that
SUMO uses for loading cycles and states, previous to the simulation process. In this file, each
tl-logic element corresponds to an intersection. Following the model designed by Krajzewicz et
al. [KBW06], a tl-logic comprises a sequence of phases in a cyclic way during the simulation
time. Each phase indicates the corresponding colors states (attribute state) of all the signal lights
in the intersection, and the duration of this state (attribute duration).
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An example of this mechanism can be observed in Figure 10.1 where the tl-logicwith id="i",
that corresponds to an intersection of the SUMO instance, contains four phases with durations
of 40, 5, 40, and 10 seconds (simulation steps). In these phases, the states have four colors,
corresponding each one of them to one of the four signal lights located in the studied intersection.
These states are the valid ones generated by SUMO adhering to real traffic rules. In this instance,
the first phase contains the state GGrr meaning that two signal lights are in green (G), and the
other two are in red (r) during 40 seconds. The following phase changes the state of the four
traffic lights to yyrr (y is amber) during 5 seconds, and so on. The last phase is followed by
the first one, and this cycle is repeated throughout the simulation time. All the tl-logics in
the complete SUMO instance perform their own programming cycles of phases at the same time,
hence constituting the global staging of signal lights. Therefore, programming cycles are the main
focus of this work, since we are interested in optimizing the combination of phase durations of all
signal lights (in all intersections) with the aim of improving the global flow of vehicles circulating
in a urban scenario instance.

A final indication in this sense concerns the behavior of the vehicles involved in the SUMO
instance scenario, that depends on both road directions and speed. SUMO employs a space-
discrete extended model as introduced by Krauß et al. [Kra98]. In this model, the streets are
divided into cells and the vehicles circulating through the streets go from one cell to another if
allowed. The speed of each vehicle depends on its distance from the vehicle in front of it, with a
preestablished maximum speed typical of urban areas (50 km/h in our study).

10.4 PSO for Traffic Light Scheduling

This section describes our optimization solver proposed for the optimal cycle programs of signal
lights. It describes the solution encoding, the fitness function, and finally the global optimization
procedure.

10.4.1 Solution Encoding

Following the structure of programming cycles adopted by SUMO, the global staging of signal
lights has been easily encoded by means of a vector of integers, where each element represents a
phase duration of one state of the traffic lights involved in a given intersection. This way, as shown
in Figure 10.1, all the phase durations in the tl-logic elements are successively placed in the
solution vector, hence mapping the complete staging of signal lights in a simple array of integers.
The reason of working with this representation is twofold: first, the SUMO simulator works itself
with integer values for representing the discrete sequence of time steps (seconds) that make up the
complete simulation procedure. Second, real signal lights also employ integer values for specifying
the duration of phases in their internal programs.

In spite of its simplicity, this solution representation allows our PSO to take into account the
interdependency of variables, not only between phase durations in a common tl-logic element,
but also between signal lights at adjacent intersections. In this sense, PSO is known to have a
successful performance with non-separable problems [Cle99, HRM+08], which is the case in this
approach. This last is an interesting feature since solutions with coordinated signal lights (located
in different but close intersections) could be then promoted by our optimization algorithm.
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10.4.2 Fitness Function

Each solution vector (s), codifying the cycle program of the signal light programs, is evaluated
considering the information obtained from the events happening during the simulation by means
of the following equation:

fitness(s) =

(
V∑

v=0
jv(s)

)
+

(
V+C∑
v=0

wv(s)

)
+ (C(s) · St)

V 2(s) + Cr
(10.1)

The main objective consists of maximizing the number of vehicles that reach their destination
(V ) during the simulation time (St). Namely, minimizing the number of vehicles that do not reach
their destination and remain circulating (C) after the simulation time is reached. A secondary but
important objective is to minimize the global duration of the vehicle’s journeys (jv). It is clear that
the global duration concerns the journey time of the vehicles that reach their destination during
the simulation process. On the contrary, vehicles with incomplete journeys (C) consume all the
simulation time St and then, an additional penalization is induced by multiplying these two factors.
It is worth mentioning that terms in Equation 10.1 are in the range of values [1e+0 · · ·5e+2] and
therefore, additional weighting values were not considered in this formulation. Only, the number
of vehicles that arrive at their destinations is squared (V 2) in order to prioritize it over the other
terms and factors.

An important factor concerns the state of the signal lights in each precise moment, since it
influences the time that each vehicle must stop and wait (wv), with the consequent delay on its
own journey time, e.g., a prolonged state of signal lights in red could collapse the intersection
where it is, and even close other intersections. However, a prolonged state in green could improve
the traffic flow in a given area or direction, but also makes the traffic flow of other areas and
directions worse. In this sense, a balanced number of color lights in the phase duration of the
states should promote those states with more signal lights in green located in streets with a high
number of vehicles circulating, and signal lights in red located in streets with a low number of
vehicles moving. The ratio of colors in each phase state of all the tl-logic tl (intersections) can be
formulated as follows:

Cr =

tl∑

k=0

ph∑

h=0

sk,h ·

(
Gk,h

Rk,h

)
, (10.2)

where Gk,h is the number of traffic lights in green (G), and Rk,h is number of signal lights in
red in the phase state h (with duration sk,h) and in the tl-logic k. The minimum value of rk,h is
1 in order to avoid division by 0.

10.4.3 Optimization Strategy

Our optimization strategy is composed of basically two main parts: an optimization algorithm
and a simulation procedure. The optimization part is carried out by means of the Particle Swarm
Optimization algorithm which has been specially adapted to find optimal (or quasi-optimal) cycle
programs for signal lights. It works as follows:

1. The initial swarm is composed of a number of particles (solutions) initialized with a set of
random values representing the phase durations. These values are within the time interval
[5, 60] ∈ Z+, and constitute the range of possible time spans (in seconds) a signal light can
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Figure 10.2: Optimization strategy for the cycle program configuration of signal lights. The
algorithm invokes SUMO for each solution evaluation

be kept on a signal color (only green or red, the time for amber is a constant value). We have
specified this interval by following several examples of real signal light programs provided by
the City Council of Malaga (Spain).

2. The velocity calculation has been softly modified in order to deal with integer combinatorial
values by truncating (with floor ⌊.⌋ and ceiling ⌈.⌉ functions) all elements (j) of the new
velocity vector as Equation 10.3 shows:

vt+1
i (j) =

{
⌊v

t+ 1
2

i (j)⌋ if U(0, 1)ti(j) ≤ λ

⌈v
t+ 1

2

i (j)⌉ otherwise
(10.3)

In this formula, v
t+ 1

2

i is the intermediate velocity value obtained from Equation 3.2. The
parameter λ determines the probability of performing ceil or floor functions in the velocity
calculation (λ = 0.5 for this study).

3. The inertia weight changes linearly through the optimization process by using the following
equation:

ω = ωmax −
(ωmax − ωmin) · g

gtotal
(10.4)

This way, at the beginning of the process a high inertia (ωmax) value is introduced, which
decreases until reaching its lowest value (ωmin). A high inertia value provides the algorithm
with exploration capability and a low inertia promotes exploitation.

The simulation procedure is the way of assigning a quantitative quality value (fitness) to the
solutions, thus leading to optimized cycle programs tailored to a given urban scenario instance.
This procedure is carried out by means of the SUMO traffic simulator, which accepts new cycle
programs of signal lights and computes the required values in Equation 10.1.

As Figure 10.2 illustrates, when PSO generates a new solution it is immediately used for
updating the cycle program. Then, SUMO is started to simulate the scenario instance with streets,
directions, obstacles, signal lights, vehicles, speed, routes, etc., under the new defined staging of
cycle programs. After the simulation, SUMO returns the global information necessary to compute
the fitness function. Each solution evaluation requires only one simulation procedure since vehicle
routes in SUMO were generated deterministically. In fact, as suggested in [SGR05], stochastic
traffic simulators obtain similar results to deterministic ones, the latter allowing huge computing
savings.
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Rivadavia Square

Bahía Blanca

Argentina

Alameda Avenue

Málaga

Spain

Google Map view OpenStreetMap view SUMO capture view

Figure 10.3: Process of creation of real-world instances for study. Rivadavia Square (38◦43’03”S
62◦15’56”O) and Alameda Avenue (36◦43’60”N 4◦25’87”O) instance views. After selecting our
area of interest (Google map view), it is interpreted by means of the OpenStreetMap tool, and
then exported to SUMO in XML format

In addition, we have to notice that each new cycle program is statically loaded for each simu-
lation procedure. Our aim here is not to generate cycle programs dynamically during an isolated
simulation as done in agent-based algorithms [KBM+05], but obtaining optimized cycle programs
for a given scenario and timetable. In fact, what real signal light schedulers actually demand are
constant cycle programs for specific areas and for preestablished time periods (rush hours, nocturne
periods, etc.), which led us to take this focus.

10.5 Methodology of Our Study

This section presents the experimental framework followed to assess the performance of our opti-
mization solver. First, we describe the signal light scenario instances generated specifically for this
work. Later, the implementation details and parameter settings are presented.

10.5.1 Instances

As we are interested in developing an optimization solver capable of dealing with close-to-reality
and generic urban areas, we have generated two scenarios by extracting actual information from
real digital maps. These two scenarios cover similar areas of approximately 0.42km2, and are
physically located in the cities of Bah́ıa Blanca in Argentina, and Malaga in Spain. The infor-
mation used concerns: traffic rules, traffic element locations, buildings, road directions, streets,
intersections, etc. Moreover, we have set the number of vehicles circulating, as well as their speeds
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Table 10.1: Rivadavia Square and Alameda Avenue instances’ specifications
City Number of Number of Number of
Instance Traffic Logics Traffic Lights vehicles

Rivadavia Square

100

(Bah́ıa Blanca)

20 88 300
500
100

30 136 300
500
100

40 176 300
500

Alameda Avenue

100

(Malaga)

20 78 300
500
100

30 130 300
500
100

40 184 300
500

by following current specifications available in the Mobility Delegation of the City Hall of Malaga
(http://movilidad.malaga.eu/). This information was collected from sensorized points in certain
streets obtaining a measure of traffic density in several time intervals. In the case of Bah́ıa Blanca
we could not obtain such an information, and hence we considered the same number of vehicles as
used for the Malaga scenario.

In Figure 10.3, the selected areas of the two cities are shown with their corresponding capture
views of OpenStreetMap and SUMO (as explained in Section 10.3.1). Other driving styles such
as the Commonwealth/British one could be also tackled with our approach, since we can easily
capture with OpenStreetMap and export to SUMO areas of UK cities, and work with them by
following their directions and traffic rules. The specific features of the selected areas are as follows:

1. Rivadavia Square. Located in the city center of Bah́ıa Blanca (Figure 10.3, top), it is made
up of 53 intersections between streets that form a practically regular grid of blocks, as is usual
in American cities. Except for the main avenue, almost all streets are one way with opposite
directions to each others. Therefore, the great majority of traffic logics (junctions) in this
scenario have four signal lights: straight on, left, and the two ones on the perpendicular
street.

2. Alameda Avenue. The city center of Malaga (Figure 10.3, bottom draw), represents the
common irregular structure of European cities, having different street widths and lengths.
It is composed of 73 junctions between streets and roundabouts. Each traffic logic in this
scenario includes from 4 to 16 signal lights.

We have considered these two scenarios since they constitute quite different urban areas with
heterogeneous structures and traffic organizations. Moreover, with the aim of obtaining generalized
concluding results, the number of instances used in the experimentation has been increased by
incorporating different numbers of vehicles moving through these streets, and different numbers
of signal lights operating within the selected areas. Table 10.1 contains the combination of traffic
logics and vehicles used in each instance for each scenario, constituting a total number of 18
instances: 9 for Rivadavia Square and 9 for Alameda Avenue. We have to notice that in spite of
both scenarios having similar scales of traffic logics (20, 30, and 40), the number of signal lights is
not the same, since they contain different intersection shapes.
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Table 10.2: Simulation and PSO parameters
Solver Phase Parameter Value

Simulation Time (steps) 500 sec.
Simulation Area 0.45 km2

Simulation Details Number of Vehicles 100/300/500
Vehicle Speed 0-50 km/h
N. of Traffic Logics 20/30/40
Max. N. of Evaluations 30,000
Swarm Size 100

Particle Size (N. Traffic Lights)
88/136/176
78/130/184

PSO Parameters Local Coefficient (ϕ1) 2.05
Social Coefficient (ϕ2) 2.05
Maximum Inertia (wmax) 0.5
Minimum Inertia (wmin) 0.1
Velocity Truncation Factor (λ) 0.5

Concerning the number of vehicles, we have considered three different scales of 100, 300, and 500
cars for each instance (as shown in Table 10.1) circulating throughout the simulation time. Each
one of the vehicles performs its own route from origin to destination circulating with a maximum
speed of 50 km/h (typical in urban areas). The routes were previously generated by following
random paths and covering as much as possible all network entries. Starting times of vehicles were
also uniform randomly specified throughout the whole simulation. This means that, at the same
time, only a subset of the whole set of vehicles is circulating through the network. The simulation
time was fixed to 500 seconds (iterations of microsimulation) for each instance. This time was
determined as a maximum time for a car to complete its route, even if it must stop at all the signal
lights it comes across. When a vehicle leaves the scenario network, it will not appear again.

10.5.2 Experimental Setup

We have used the implementation of the PSO algorithm provided by the MALLBA library[ALGN+07].
The simulation phase is carried out by executing (in the evaluation of particles) the traffic simulator
SUMO release 0.12.0 for Linux. The experiments were performed in computers at the laboratories
of the Department of Computer Science of the University of Malaga (Spain). Most of them are
equipped with modern dual core processors, 1GB RAM, and Linux Debian O.S. They operate
under a Condor [TTL05] middleware platform that acts as a distributed task scheduler (each task
dealing with one independent run of PSO).

For each scenario instance we have carried out 30 independent runs of our PSO. The swarm
(population) size was set to 100 particles performing 300 iteration steps, hence resulting in 30,000
solution evaluations (SUMO simulations) per run and instance. The choice of these two parameters
(swarm size and maximum iteration steps) corresponds to previous tuning experiments as described
in Section 10.6.1. The particle size directly depends on the number of signal lights of each instance
(shown in Table 10.1). The remaining parameters are summarized in Table 10.2. These parameters
were set after preliminary executions of PSO with the smallest instances of Rivadavia Square
and Alameda Avenue (with 20 traffic logics and 100 vehicles). Specific parameters of PSO were
selected as recommended in the studies about the convergence behavior of this algorithm in [Cle99]
and [ES00]. According to these, acceleration coefficients ϕ1 and ϕ2 were set to 2.05 and inertia
weight decreases linearly along with the increment of the iteration steps from 0.5 to 0.1.

Additionally, we have implemented three algorithms also in the scope of the MALLBA [ALGN+07]
library, with the aim of establishing comparisons against our PSO. These three algorithms are a
Random Search (RANDOM), a Differential Evolution (DE), and the Standard PSO 2011 (SPSO2011).
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Algorithm 11 Pseudocode of RANDOM

1: x← initializeSolution()
2: t← 0
3: while t < MAXIMUMt do
4: generate(xt) //new solution
5: if f(x) ≥ f(xt) then
6: x← xt

7: end if
8: t← t+ 1
9: end while

Thus, performing the same experimentation procedure, we expect to obtain some insights into the
power of our proposal (how much intelligent it is) regarding a technique without any heuristic infor-
mation in its operation (RANDOM), and with regards to two other difference-vector based meta-
heuristics: DE, and SPSO2011. In the case of SPSO2011, it is the last PSO proposal in [PCG11]
and uses a different quantisation/discretization method to our PSO. The maximum number of
evaluations was set to 30, 000, as for PSO.

The pseudocode of the Random Search algorithm is shown in Algorithm 11. It basically per-
forms by keeping just the best solution found so far in the optimization procedure. For the sake
of a fair comparison, we also adapted the DE for dealing with integer values in the solution cod-
ification, that is, using the same mechanism of ceiling/flooring (⌈.⌉/⌊.⌋) functions as done in the
velocity vector calculation of PSO (Equation 10.3).

wt+1
i (j) =

{
⌊w

t+ 1
2

i (j)⌋ if U(0, 1)ti(j) ≤ λ

⌈w
t+ 1

2

i (j)⌉ otherwise
(10.5)

In the case of DE, the truncation method is applied to the mutant vector wt+1
i , as specified in

Equation 10.5, also with λ = 0.5.Finally, as previously commented on in Section 10.3.1, SUMO
provides a deterministic algorithm for generating cycle programs (SCPG, SUMO Cycle Programs
Generator). Then we also compare the cycle programs obtained by our PSO against these ones
obtained by SUMO. This last algorithm basically consists in assigning to the phase durations of
the traffic logics fresh values in the range of [6,31], according to three factors:

1. the proportion of green states in the phases,

2. the number of incoming lanes entering the intersection, and

3. the braking time of the vehicles approaching the signal lights.

Further information on this algorithm can be found in [KBW06].

10.6 Analysis and Discussion of Results

Results and their analyses are presented in this section from several points of view. First, we study
the performance of our optimization solver in comparison with other techniques, and its ability to
report successful cycle programs for the different instances. After this, we present a brief report
on the computational effort required for the experiments. Later, we turn the focus on the problem
domain, and we examine representative reported solutions with the aim of justifying the use of our
PSO with a potentially truly positive impact on traffic flow.
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Figure 10.4: Traces of progress of the best fitness values (Median out of 30 independent runs)
of PSO tackling with the Alameda Avenue instance with 30 traffic logics and 300 vehicles. The
traces correspond to different configurations of swarm sizes (with 50, 100, and 200 particles) and
maximum number of iterations (100, 300, and 500) as stop condition

10.6.1 Performance Analysis of Algorithms

Before any comparison takes place, we first wish to show a representative view of the internal
behavior of our PSO under different conditions of swarm size and maximum number of iterations.
We used this investigation as a basis for setting the most convenient values in the following ex-
perimentation. So, Figure 10.4 plots the traces of progress of the best fitness values (Median run
out of 30 independent executions) of PSO tackling with the Alameda Avenue instance with 30
traffic logics and 300 vehicles. These traces correspond to different configurations of swarm size
(Ss) with: 50, 100, and 200 particles, and maximum number of iterations (MAXIMUMt) with:
100, 300, and 500 steps to the stop condition. It is worth saying that the number of iteration
steps directly influences on the inertia weigh (in the velocity calculation of PSO), and hence, this
parameter should be studied separately in combination with all different values of swarm size.

As shown in Figure 10.4, for almost all the combinations (of Ss and MAXIMUMt) our PSO
got to converge on the interval of 100 and 300 iterations, showing the combination of 100 particles
in the swarm and 300 iteration steps the best performance results. In fact, for this configuration
the fitness clearly improved after 100 iterations to finally converge just before 200 iteration steps
(20,000 function evaluations). We have to mention that other configurations of PSO with Ss = 200
MAXIMUMt = 500 also obtained such a successful results although requiring a higher computa-
tional cost with more than 50,000 function evaluations (Ss = 100 and MAXIMUMt = 500), in
contrast with 30,000 ones in the case of Ss = 100 and MAXIMUMt = 300. Therefore, we opted
to set 100 particles in the swarm and a maximum of 300 iteration steps in our experimentation.

From another point of view, Figure 10.5 plots the trace progress of the best fitness values
obtained in 30 independent runs of PSO when solving the Rivadavia Square instance with 40
traffic logics and 500 vehicles. In this figure, we can observe that for all executions our algorithm
practically converged after the first 150 iterations, using the remaining time to only slightly refine
solutions. In addition, all the computed solutions are close each other in quality, but different
among them. These are desirable features in terms of convergence and robustness, since we can
offer to the expert a varied set of accurate cycle programs in a reduced time.
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Figure 10.6: Swarm fitness histogram through 300 iterations in the optimization of the Rivadavia
Square scenario with 40 traffic logics and 500 vehicles

To better explain this, Figure 10.6 plots the absolute frequency of the fitness distribution of the
entire swarm through the optimization process of one typical execution. Specifically, it illustrates
one of the thirty independent runs of our PSO tackling the Rivadavia Square scenario with 40
traffic logics and 500 vehicles. We can see that the initial particles are diverse and with high
cost values (≃ 7), although they were able to converge in a low fitness region (≤ 1) during the
second half of the execution process. In this specific run, 475 vehicles out of 500 reached their
particular destinations (95%) in a simulation time lower than 500 seconds (the complete number of
microsimulation steps). This accurate behavior is also found in all executions and for all instances,
and it represents another interesting feature of our approach.
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Table 10.3: Median fitness values obtained by PSO for all the scenario instances. Median fitness obtained by RANDOM and by
SCPG algorithms are also provided. NTL is the Number of Traffic Logics

Instance NTL
Number of Vehicles

100 300 500
PSO RANDOM SCPG PSO RANDOM SCPG PSO RANDOM SCPG

20 1.64E+00 2.91E+00 2.38E+00 8.40E-01 1.45E+00 9.24E-01 7.93E-01 1.51E+00 9.56E-01
Rivadavia Square 30 1.80E+00 3.11E+00 2.45E+00 9.09E-01 1.65E+00 9.57E-01 8.79E-01 1.72E+00 9.89E-01

40 1.79E+00 3.08E+00 2.49E+00 9.11E-01 1.75E+00 9.76E-01 8.96E-01 1.74E+00 9.93E-01
20 9.47E-01 1.68E+00 1.49E+00 8.44E-01 1.62E+00 1.29E+00 4.10E+00 7.87E+00 2.35E+01

Alameda Avenue 30 1.56E+00 3.55E+00 5.12E+00 1.74E+00 4.52E+00 6.00E+00 7.67E+00 1.33E+01 3.31E+01
40 1.88E+00 3.98E+00 5.38E+00 2.87E+00 7.33E+00 1.83E+01 9.39E+00 1.64E+01 1.47E+01

Table 10.4: Median fitness values obtained by our PSO, DE, and Standard PSO 2011 for all the scenario instances. NTL is the
Number of Traffic Logics

Instance NTL
Number of Vehicles

100 300 500
PSO DE SPSO2011 PSO DE SPSO2011 PSO DE SPSO2011

20 1.64E+00 2.18E+00 1.87E+00 8.40E-01 9.94E-01 9.82E-01 7.93E-01 9.80E-01 1.22E+00
Rivadavia Square 30 1.80E+00 2.25E+00 2.33E+00 9.09E-01 1.11E+00 1.28E+00 8.79E-01 1.02E+00 1.44E+00

40 1.79E+00 2.23E+00 2.50E+00 9.11E-01 1.13E+00 1.25E+00 8.96E-01 1.10E+00 1.40E+00
20 9.47E-01 1.22E+00 1.11E+00 8.44E-01 1.07E+00 9.12E-01 4.10E+00 4.98E+00 4.71E+00

Alameda Avenue 30 1.56E+00 2.19E+00 2.49E+00 1.74E+00 2.54E+00 3.47E+00 7.67E+00 8.57E+00 1.11E+01
40 1.88E+00 2.54E+00 3.21E+00 2.87E+00 4.06E+00 5.32E+00 9.39E+00 1.17E+01 1.30E+01
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Figure 10.7: Boxplots representation of distributions results of Rivadavia Square (three at the top)
and Alameda Avenue (three at the bottom) instances with 20, 30, and 40 traffic logics, and 100,
300, and 500 vehicles. The results of SCPG are represented with a � point since this technique
always returns the same deterministic result for a given instance

Table 10.3 contains the median fitness values obtained by the proposed PSO for all the scenario
instances. Additionally, the median fitness values obtained by the RANDOM algorithm, and the
results of the SCPG are also provided in order to allow comparisons. We can easily check in this
table that PSO obtained the best median fitness (marked in bold) independently of both, the
number of vehicles and the number of traffic logics in each scenario instance.

In order to provide statistically meaningful comparisons, we have applied a Signed Ranking
(Wilcoxon) test [Wil87] to the numerical distributions of the results. We have used this non-
parametric test since the resulting distributions usually violated the condition of normality required
to parametric tests (Z Kolmogorov-Smirnov = 0.04). Another implication of the violation of the
normality condition is the use of median values (as shown in Table 10.3) instead of other measures
like the mean and the standard deviation [She07]. The confidence level was set to 95%, which
allows us to ensure that all these results are statistically different if they result in p-value<0.05.

In effect, for all the instances, the differences between the distributions out of 30 independent
runs resulted with p-values << 0.05. In general, the differences in the distributions of the medians
(Table 10.3) resulted in a global p-value of 5.73E-7 when comparing PSO with RANDOM, and
a global p-value of 6.33E-5 when comparing PSO with SUMO. Therefore, we can claim that our
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PSO obtained statistically better results than the other two compared algorithms: RANDOM
(stochastic search) and SCPG (deterministic). This also means that our algorithm is intelligent
and competent when compared to greedy information and human knowledge.

A summary of these results can be seen in Figure 10.7, where the boxplots of the distribution
fitness of PSO, and RANDOM are plotted. The results of SCPG are represented with a � point
since this technique always returns the same deterministic result. As expected, the distributions
of PSO show better lower quartiles, medians, and upper quartiles than RANDOM for all the
instances. Regarding SCPG, we can notice that the median values of PSO are in general better
than the results of SCPG. Only in the case of Rivadavia Square with high densities of traffic (300
and 500 vehicles), the SUMO results get close to the upper quartiles of our PSO distributions.

Concerning the two scenario instances, the resulting fitness values in Rivadavia Square are in
general better than the ones obtained in Alameda Avenue. This difference in the results is more
noticeable when a large number of vehicles is circulating (500), where the median fitness differ in
two orders of magnitude (from 7.93E-01 to 3.31E+01). We suspect that the regular structure of
Rivadavia Square (see Figure 10.3) makes the traffic more fluid in this scenario than in Alameda
Avenua (with irregular European design), which could lead the PSO to obtain different ranges of
results in similar conditions.

10.6.2 Comparison with Other Metaheuristics

For a further comparison, we have studied the performance of two other metaheuristic algorithms
for the same experimental procedure as with our proposal. A first comparison concerns a Differ-
ential Evolution algorithm (as described in Section 10.5.2), by means of which we expect to better
justify the use of PSO on the cycle program of signal lights. Secondly, we compare our PSO against
the Standard PSO 2011 which performs a different velocity calculation and discretization method.

The median fitness values (out of 30 independent runs) resulted in the experimentation of DE
and SPSO2011 are included in Table 10.4 together with the ones of our PSO for the two scenario
instances, Rivadavia Square and Alameda Avenue. Again, we confirm that the PSO obtained the
best median fitness for all the combinations of number of vehicles and number of traffic logics in
each scenario instance. In general, using a Wilcoxon Signed Rank test with α=0.05, the differences
in the distributions of the medians (Table 10.4) resulted in a global p-value of 1.94E-4 when
comparing PSO with DE, and a global p-value of 1.96E-4 when comparing PSO with SPSO2011.
In the first case, the different learning procedures that our PSO and DE perform is the main
factor that influences the statistical differences in results, since these two algorithms used the same
discretization method. In the second case, the different velocity calculation methods influence the
algorithms’ performances of our PSO and SPSO 2011, indicating that our proposal is better than
the last Standard PSO for the tackled problem.

As a further comparison, SPSO2011 showed better fitness values than DE, resulting a global
p-value of 1.47E-2. If we take into account that DE uses a similar discretization method as to
our PSO, the last results lead us to suspect that the different discretization of vectors marginally
influences on the global algorithm’s performance.

Therefore, in the scope of the experimental framework adopted in this approach, we can claim
that our PSO also obtained statistically better results than the other metaheuristic approaches
(DE and SPSO2011) used to solve the optimal cycle program of signal lights.
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Figure 10.8: Increment of the median fitness with regards to the number of signal lights for the
Alameda Avenue scenario. The values are in logarithmic scale

Table 10.5: Mean time and standard deviation in seconds of our PSO to compute all the experi-
ments
Instance Number of Traffic Logics

Number of Vehicles
100 300 500

20 4.14E+02±6.74E+01 5.94E+02±6.83E+01 7.25E+02±6.53E+01
Rivadavia Square 30 4.09E+02±6.11E+01 5.04E+02±5.54E+01 7.44E+02±6.51E+01

40 3.56E+02±5.42E+01 4.43E+02±4.60E+01 6.66E+02±5.66E+01
20 4.30E+02±4.55E+01 1.20E+03±7.58E+01 1.59E+03±9.50E+01

Alameda Avenue 30 5.46E+02±5.48E+01 1.14E+03±7.43E+01 1.51E+03±8.59E+01
40 5.12E+02±5.12E+01 1.23E+03±8.03E+01 1.48E+03±8.51E+01

10.6.3 Scalability Analysis

To study the scalability of our proposal, we now focus on the influence of the two main factors
defining the complexity of the instances: the number of traffic logics (20, 30, and 40), and the
number of vehicles circulating (100, 300, and 500).

The first observation concerns the number of traffic logics (and hence, the number of traffic
lights), since it determines the dimensionality of the problem. In Figure 10.8, we can observe that
the mean fitness values increase with the number of traffic logics, as expected. Although, this
increment is moderate with regards to the number of signal lights (dotted lines).

A second interesting observation can be obtained from Figure 10.7, where the distribution
of results concerning the number of vehicles are completely different for both scenarios. Thus, in
Alameda Avenue (three boxplots in the top) the distribution of results gets worse with an increasing
number of vehicles. This seems logical since a high number of cars increases the possibility of
generating traffic jams. In addition, we must take into account that the number of vehicles that
arrive to their destinations directly influences the fitness function. To the contrary, in Rivadavia
Square (three boxplots in the bottom) the distributions of results improve as the number of vehicles
increases. In this case, we suspect that the particular shape of this scenario, with parallel streets and
thus organized flow, could influence in the number of vehicles that quickly reach their destinations
and leave the scenario, hence introducing great benefits to the fitness calculation.
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10.6.4 Computational Effort

Table 10.5 contains the mean times (and standard deviations) in seconds required by our PSO
to compute all the experiments. We must state that these times are averaged, since they were
calculated in the scope of a Condor [TTL05] middleware with a pool of machines with different
specifications.

The lowest execution time (3.56E+02 seconds) was required for solving the Rivadavia Square
scenario with 40 traffic logics and 100 vehicles. The highest time (1.59E+03 seconds) was used in
the resolution of Alameda Avenue scenario with 20 signal lights and 500 vehicles. All these times
are in a range from 6.33 to 26.5 minutes, which is completely acceptable to the human experts in
civil engineering designing and taking decisions on the traffic network.

We stress that the computing time increases with the number of vehicles (common sense),
although it decreases with the number of signal lights (counterintuitive). This fact can be due to
the optimized cycle programs that control a great number of signal lights. These optimized traffic
lights enhance the traffic flow leading the cars to get their destinations quickly, hence reducing the
computing load of simulation.

10.6.5 Analysis of Solutions

Finally, in this section we focus on the cycle programs obtained as solutions by our PSO, and the
possible profits they can offer to the actual users in this field. Then we show the broad impact of
using our approach, able to compute realistic and comprehensive signal light timing programs.

In this context, for each iteration step of the PSO and for each particle in the swarm, we have
saved the information obtained from each simulation (solution evaluation) about both, the number
of vehicles that reached their destinations and the average duration of their journeys. This way, we
can distinguish the progressive improvement in the traffic flow obtained from the initial solutions
to the final ones, through out the complete optimization procedure.

A representative example can be observed in the optimization process of the Alameda Avenue
scenario with 30 traffic logics (130 signal lights in the cycle program) and 300 vehicles. First, in
Figure 10.9 we can see the trace of the number of vehicles that did reach their destinations (upper
continuous line) versus the number of vehicles that did not reach their destinations (lower dotted
line) for each iteration step in a run of PSO. The overlapped curves show the mean number of
vehicles (out of 30 independent runs) that did arrive and did not arrive at their destinations. In
contrast, this figure also shows the results (in dotted straight lines) of the SCPG (SUMO algorithm)
for this same instance.

We can easily see in Figure 10.9 how the amount of vehicles that did arrive (did not arrive) to
their destinations increases (decreases) as the algorithm gets the stop condition of 300 iterations.
In fact, at the initial steps of the optimization process, the number of vehicles that reached their
destinations was lower than the ones resulting in the cycle program generated by SCPG. However,
in the final steps of the PSO procedure, the solutions obtained show a high quality in terms of the
traffic flow, since 295 vehicles of the initial 300 (98.33%) finalized their trips successfully. Moreover,
a mean number of 255 vehicles completed their trips in the final solutions of PSO (average of 30
runs). This contrast to the 160 vehicles that reached their destinations in the SUMO cycle program.
The improvement obtained by our PSO over SCPG is 31.66%.

Another interesting behavior that can be observed in Figure 10.9 is the alternating peaks and
valleys that appear in the curves of the single run of PSO. These peaks represent solutions with
an accurate fitness but with a low number of cars reaching their destinations. This can be due to
the fact that, the fitness function (Equation 10.1) promotes cycle programs with large durations
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Figure 10.10: Mean trip time of vehicles calculated for each one of the simulations performed
through a representative run of PSO. SCPG results are also shown with a dotted straight line. Y
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of phases in which the proportion of signal lights in green is higher than in red. For certain
intersections with several secondary streets and only one big avenue, the signal lights controlling
this avenue could extend their states in red, thus resulting in a traffic jam that could delay the
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Figure 10.11: Simulation traces of the traffic flow (cars in white) resulting from the cycle programs
generated by both, SCPG (left) and PSO (right). The pictures show snapshots at the end of the
simulation time. The reader can see that the SCPG leaves a dense traffic while PSO has cleared
the routes and the traffic is very fluid and smooth

traffic in other adjacent intersections/streets. A string influence on the successful trips in the
fitness function (promoting the number of vehicles that arrive and penalizing when vehicles do not
arrive) leads the PSO to avoid this kind of solutions.

From a different point of view, Figure 10.10 plots the trace of the average journey time employed
by the vehicles in the resulting solutions of PSO through all the iterations of an example run. In
this case, the journey time becomes shorter as the algorithm approaches the stop condition. We
must note that, in the calculation of the journey time, the vehicles that did not arrive at their
destinations took 500 seconds, the complete simulation time. For this reason, SCPG solutions
showed an average journey time of 308.75 seconds while PSO solutions obtained a journey length
of 78 seconds, which involves an improvement of 74% with respect to the SCPG solution. In this
specific case, 295 vehicles (of 300) completed their trip during the simulation time with an average
journey time of 78 seconds to complete the urban scenario of 650 × 650 meters. In the worst
case, the remaining five vehicles will complete their trips in at most 500+78 seconds, that is, the
complete simulation time plus the average journey time.

Finally, with the aim of clarifying the final implications of using (or not using) an optimized
cycle program, Figure 10.11 shows the simulation traces of the traffic flow resulting from solutions
generated by both, SCPG (left) and PSO (right). The pictures were captured at the end of the
simulation time (500 seconds), and correspond to two simulation procedures of the scenario instance
Alameda Avenue with 40 traffic logics (184 traffic lights) and 500 vehicles. As we can observe, the
traffic density of the SCPG cycle program is clearly higher than the one of PSO, even showing the
former several intersections with traffic jams. As to the PSO cycle program, all intersections are
unblocked at the end of the study.

10.7 Conclusions

In this chapter, we propose an optimization technique based on a Particle Swarm Optimization
algorithm that can find successful signal light timing programs. For the evaluation of solutions we
use SUMO, a well-known microscopic traffic simulator. For this study we have tested two extensive
and heterogeneous metropolitan areas located in Bah́ıa Blanca, and Malaga.
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Out of these two scenarios, a total number of 18 different numerical instances have been gen-
erated depending on the amount of vehicles circulating and the number of signal lights operating.
A series of analyses have been carried out from different points of view: the performance of the
optimization technique, the scalability, the computational effort, and the quality of solutions. From
these, the following conclusions can be extracted:

1. Our PSO solver performs successfully in the generation of optimized cycle programs for
big realistic traffic scenarios. For all the instances, our proposal obtained robust results
statistically better than the other two compared algorithms: the SUMO cycle programs
generator (SCPG) and a Random Search algorithm (RANDOM).

2. In comparison with the Differential Evolution and Standard PSO 2011 algorithms, our PSO
also showed a better performance.

3. In the scope of the scenario instances studied here, we can claim that our PSO scales ade-
quately in terms of the number of traffic lights. Concerning a growing number of vehicles,
we have characterized how the scenario topology can influence in the scalability power of our
proposal, showing accurate results specially with regular route designs.

4. The complete optimization process required a computational mean time in the range from
6.33 to 26.5 minutes, which is completely acceptable for use by human experts in civil en-
gineering. Furthermore, these values suggest that we can still work with larger scenario
instances in future experiments.

5. The final solutions obtained by our PSO can improve the number of vehicles that reach their
destinations and the mean journey time, for all the instances. In particular, for the Alameda
Avenue instance with 30 traffic logics and 300 vehicles, the improvement obtained is around
31.66% in the number of completed trips and 74% in the journey time, regarding SCPG. All
this means a real improvement in city traffic.

For future work, we will be tackling the optimal cycle program with other optimization tech-
niques, and in particular other metaheuristics. We are also interested in using other traffic simula-
tors and creating new larger dimension instances, as close as possible to real scenarios of a whole
city.
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Chapter 11

Conclusions and Future Work

11.1 Global Conclusions

Let us start this chapter with a summary of our whole work. This PhD Thesis considers the
analysis of the Particle Swarm Optimization, as well as the design and implementation of new
proposals based on this algorithm. This work also addresses the resolution of complex real-world
optimization problems with PSO in the domains of: DNA Microarrays, VANETs Communication
Protocols, and Signal Lights Timing Programs. We have reviewed the concepts of metaheuristics,
swarm intelligence, and in concrete, particle swarm optimization. Then, we have put special
interest in identifying weaknesses in PSO on different problem’s landscape characterizations and
scalability conditions. After this, we have proposed advanced design issues with optimized learning
procedures, new operators and hybridizations, giving rise to improved versions of PSO. Each
different research study considered in this thesis entails a thorough experimentation, with statistical
validation and comparisons with the current state of the art.

The main contributions of this thesis are enumerated bellow:

1. Design and analysis of hybrid PSO with DE. Taking as a base-line method the PSO,
our proposal (called DEPSO) used the differential variation scheme employed in DE for
adjusting the velocity of PSO’s particles. To test DEPSO, we have performed a thorough
experimentation in the context of two Special Sessions of Real Parameter Optimization with
different sets of functions: MAEB’09/CEC’05 and GECCO BBOB’09 summing up a total
number of 74 different functions with dimension: 2, 3, 5, 10, 20, 30, and 40 variables. On
MAEB’09 test set, we showed that hybridizing PSO with DE differential operators provides
the first algorithm with search capabilities on rotated and non-separable functions, on which
the standard PSO initially showed a limited performance. In addition, DEPSO also showed
better performance than canonical DE on a considerable number of functions for dimensions
10 and 30. On BBOB’09 noiseless functions, our proposal obtained an accurate level of
coverage rate for separable and weak structured noiseless functions. On BBOB’09 test set
noisy functions, DEPSO obtained an accurate level of coverage rate for moderate and severe
noise multimodal functions. The fact of using the same parameter setting for all functions
(and dimensions), together with the relatively small number of evaluations used, lead us
to expect that DEPSO can be easily improved for covering noiseless functions with larger
dimensions in other future works.
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2. Scalability analysis of PSO and design of new proposals using a velocity modula-
tion mechanism. We have designed a new comprehensive velocity modulation mechanism
for PSO that, joined with a restarting method, led us to enhance the performance of this
algorithm on scalable environments. Our hypothesis is that these two new mechanisms can
help the PSO to avoid the early convergence and redirects the particles to promising areas in
the search space. After an experimentation phase in the scope of the SOCO’10 benchmark
of large scale real-parameter functions, we have tested that our proposal, called RPSO-vm,
is scalable, as well as highly competitive with regard to other compared optimizers. In con-
crete, we can remark that: RPSO-vm outperforms the basic PSO, as well as PSO with each
new mechanism separately, for all dimensions. In fact, it is the second best algorithm for all
dimensions and statistically similar to the best one in comparison with DE, CHC, and G-
CMA-ES, well-known optimizers traditionally used for continuous optimization and showing
an excellent performance in other benchmarks (CEC’05, CEC’08, BBOB’09, etc.); our pro-
posal obtained the best results for a number of shifted functions with different properties of
modality, separability, and composition. In general, we have tested that RPSO-vm performs
relatively better in larger dimensions than in smaller ones.

3. Design of velocity modulation PSO for multi-objective problems. We have evaluated
six MOPSO algorithms over a set of three well-known benchmark problems by using three
different quality indicators. In this context, we have observed that OMOPSO is clearly the
most salient of the six compared algorithms. However, the results have also shown that all
the algorithms are unable to find accurate Pareto fronts for three multi frontal problems. We
have studied this issue and we have proposed the use of a velocity modulation mechanism
to enhance the search capability in this sense. The resulting algorithm, namely SMPSO,
showed significant improvements when compared with respect to OMOPSO and NSGA-II.

4. Thorough analysis on the number of informant particles in the learning procedure
of PSO. We have generalized the number of informants that take part in the calculation of
new particles in PSO. For this, we have created a new version of Informed PSO, called PSOk,
with the possibility of managing any neighborhood size k, from 1 informant to all of them
in the swarm. The new proposal has been thoroughly analyzed from the point of view of its
evolvability. A series of experiments and comparisons have been carried out in the scope of
CEC’05 benchmark of functions. The influence of the number of informants, the problem
dimension, and the swarm size have been also analyzed. The following conclusions can be
extracted that confirm our initial hypothesis: a number of 6 informants in the neighborhood
makes the algorithm to perform with high success in practically all tackled functions. In
fact, using few informants (<4) leads the PSOk to show a positive fitness-distance correla-
tion, although evolving solutions with poor fitness values and far from global optima. With
more than 10 informants, solutions are again correlated, although concentrating on small
non interesting regions of the landscape. Using 6 informants is the best trade-off between
fitness-distance and fitness quality. Each PSOk version shows quite similar behavior in our
experiments independently of the swarm size, and independently of the problem dimension.
This means that PSOk is having additional features making it scalable and resistent to cons-
trained execution (memory-restricted, at least). All this means that, at least for the popular
continuous benchmarks, researchers should consider PSO6 instead of the standard PSO with
2 informants as their first choice.

5. Design of hybrid PSO with Multiple Trajectory Search method for non-separable
problems. Following our previous research line and based on aforementioned results, we
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here face an important limitation of PSO up to now: its poor performance on non-separable
problems. Our hypothesis is that our proposed PSO6 plus a hybridization for continuous
search will outperform the best techniques now. We have hybridized our emerged proposal
PSO6 with the modern Multiple Trajectory Search (MTS) local search method to tackle
non-separable problems more efficiently. The proposed algorithm, PSO6-Mtsls, has been
empirically assessed in the scope of CEC’05 and SOCO’10 benchmarks, summing up a number
of 40 real-parameter optimization functions. We can ensure that PSO6-Mtsls statistically
outperforms IPSO-Powell and G-CMA-ES, and is better ranked than IACOr-Mtsls and IPSO-
Mtsls. These algorithms were catalogued as the most prominent approaches in the literature,
which is from now on an old result after our contribution. The local search method Mtsls
(LS1) seems to be responsible of the successful performance on non-separable and multimodal
functions, whereas the learning procedure of PSO6 takes mostly part in rotated ones.

6. Design and application of a Parallel Geometric PSO to the gene selection in DNA
Microarrays’ datasets. The proposed algorithm, called Parallel Multi-Swarm Optimizer
(PMSO), performs an island based distributed topology and uses a Support Vector Machine
(SVM) classifier to measure the accuracy of selected subsets of genes. This approach is
able to improve the sequential versions in terms of computational effort (Efficiency of 85%).
PMSO has been experimentally assessed with different population structures on four well-
known cancer datasets, identifying specific genes that our work suggests as significant ones.
Concretely, with regard to the Leukemia and Lymphoma datasets, we could confirm that
the most frequently PMSO reported genes are also the most relevant genes suggested in the
original publications from Biology (Golub et al. and Alizadeh et al., respectively) concerning
these Microarrays. Thus, parallelism is confirmed as a powerful tool to enhance the basic
search sheet of PSO in real problems.

7. Application of studied techniques to the optimal parameter tuning communica-
tion protocols in VANETs. We have tackled the optimal File Transfer protocol Configu-
ration (FTC) in vehicular ad hoc networks (VANETs) by means of PSO, as well as other four
popular metaheuristic algorithms. For this, we have designed a complex system accounting
for a flexible simulation structure targeted for optimizing the transmission time, the number
of lost packets, and the amount of data transferred in simulated and also realistic VANET
scenarios. The experiments, using ns-2 (well-known VANET simulator), reveal that all algo-
rithms are capable of efficiently solving the optimum FTC problem. Nevertheless, we have
to highlight that PSO performs statistically better than all algorithms in Urban and statis-
tically better than DE and ES in Highway. The scalability analysis shows PSO keeps the
best result even for larger instances. From the point of view of the real world utilization,
PSO can reduce 19% of the transmission time in Urban and 25.43% in Highway with regards
to human experts configuration of CARLINK, while transmitting the same amount of data
(1,024 kBytes). The highest effective data rates obtained by PSO (of 300.39 kBytes/s in
comparison with 241.5 kBytes/s of human experts) and DE (292.57 kBytes/s) in Urban lead
us to advise the final use of swarm intelligent approaches for the automatic tuning of commu-
nication protocols in VANETs. This is important for developing new applications between
cars in future smart cities like Malaga and others in the world.

8. Application of swarm intelligent techniques to the Signal Light Timing in road
traffic environments. We have proposed a PSO approach that can find successful signal
light timing programs, an important part of any smart mobility system. For the evaluation
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of solutions we have used SUMO, a well-known microscopic traffic simulator, deploying for
this study two extensive and heterogeneous metropolitan areas located in Bah́ıa Blanca and
Malaga. Out of these two scenarios, a total number of 18 different numerical instances
have been generated depending on the amount of vehicles circulating and the number of
signal lights operating. Our PSO solver performs successfully in the generation of optimized
cycle programs for big realistic traffic scenarios. For all the instances, our proposal obtained
robust results statistically better than the other two compared algorithms: the SUMO cycle
programs generator (SCPG) and a Random Search algorithm (RANDOM). In comparison
with DE and the recent Standard PSO 2011 algorithms, our PSO also showed a better
performance. In addition, we can claim that our PSO scales adequately in terms of the
number of traffic lights. Concerning a growing number of vehicles, we have characterized
how the scenario topology can influence in the scalability power of our proposal, showing
accurate results specially with regular route designs. The final solutions obtained by our
PSO can improve the number of vehicles that reach their destinations and the mean journey
time, for all the instances. In particular, for the Alameda Avenue instance in Malaga, with
30 traffic logics and 300 vehicles, the improvement obtained is around 31.66% in the number
of completed trips and 74% in the journey time, regarding SCPG (expert’s choices). All this
means a real improvement in traffic without making major changes in the infrastructures of
the city.

9. Implementation of multiple PSO versions and new proposals for the MALLBA Li-
brary. We have designed and implemented a series of PSO versions following the C++ skele-
ton structure provided by the MALLBA Library for metaheuristics. Our implementations
are currently being used in different research projects. Indeed, a high number of publications
referencing it can be checked at http://neo.lcc.uma.es/software/mallba/project.php.
Furthermore, practically all approaches used in this thesis have been developed using MALLBA.
This way, any researcher can easily reproduce the results presented here.

In summary, during this thesis work we have made a wide number of contributions to the field
of particle swarm optimization in several ways. From the algorithmic point of view, new advanced
versions have been developed and further analyzed attending to different issues. From the point
of view of applications, we have tackled several engineering problems belonging to many diverse
areas, showing the utility of our proposals for addressing problems that could arise in academy and
industry. As a global conclusion, we can state that our PSO proposals are first class
base-line optimizer able of the best performance in modern benchmarking, as well as
in present real-world optimization problems.

11.2 Future Lines of Research

Throughout this PhD Thesis, several open questions concerning the Particle Swarm Optimization
have been solved, although new directions for future work have also appeared.

In general, we will investigate on other elemental features and learning procedures of the PSO
algorithm. Besides, we plan to perform analytical investigations on new modern benchmarks test
suites (BBOB, CEC’13, etc.) with different function characteristics and dimensions. In addition,
despite the successful results in solving the three real world applications tackled here, it is a good
idea to focus on these problems from different points of view, like using multi-objective, parallel
and/or dynamic versions of this algorithm will lead us to explore new opportunities in such domains
of application.

http://neo.lcc.uma.es/software/mallba/project.php
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In concrete, as future lines of research, we can identify the following main trends.

1. Adapting PSO to Tackle Non-Separable Problems. As we observed in previous chap-
ters (mostly in Part II), one of the main issues affecting the PSO when facing complex prob-
lems is the interaction between variables. Two variables interact if they cannot be optimized
independently to find the global optimum of an objective function. Variable interaction is
commonly referred to as non-separability in continuous optimization [LY12], and also known
as epistasis or gene interaction in evolutionary computation [Dav90].

On the one hand, when no interaction between any pair of the decision variables exists, a
problem can be solved by optimizing each of the decision variables independently. This is
the case of the raw PSO technique, which performs variable by variable updates without any
additional mechanism for managing nor detecting interaction between them. On the other
hand, the other extreme case is when all of the decision variables interact with each other
and all of them should be optimized together. However, most of the real world problems fall
in between these two cases, for which, subsets of decision variables interact with each others
forming several clusters of interacting variables.

A way of dealing with this issue is by using cooperative/coevolving models [LY12], by means
of which solutions are decomposed into smaller subsets of dependent variables and optimized
separately to the rest of solution subsets. In this thesis, we have opted to develop a hybrid
PSO method with Multiple Local Search (in Chapter 7), that uses a variable range control
mechanism to perform search decisions through iteration steps of the local search. Never-
theless, these approaches require additional structures for managing the non-separability
increasing the algorithmic complexity of PSO. A possible new direction is to reformulate
the learning equations performing PSO’s dynamics to manage sets (clusters) of dependency
between variables. The effect of using such a new formulation for particle’s movement is
therefore a potential topic for future research.

2. Adaptive Sets of Informant Neighbors. One of the problems of using neighborhoods
of informant particles is that they increase the difficulty of setting up the algorithm. Sev-
eral decisions like: how many informants and what topology network will constitute the
neighborhood, have to be taken. In this thesis work, the number of informants has been
empirically investigated, although using an unstructured topology to provide general conclu-
sions on a wide number of benchmark problems. A step beyond in this sense is to design
adaptive neighborhoods with different number of informants and topologies depending on
the problem structure.

The rules established in this, as well as in previous studies [AD05], should be used as a starting
point for that goal. These rules should be generally based on statistic indicators obtained
throughout the search procedure concerning: particle’s diversity, adequateness, evolvability,
population entropy, probability of falling in local optima, and other linearly (if possible)
complex guides; that should lead the algorithm to automatically control the tradeoff between
exploration-exploitation for each kind of problem.

3. Facing Dynamic Problems. The application of PSO to dynamic problems has been
explored by various authors [PV02, HE02, KSA+12]. Similar to EAs, PSO must be modified
to successfully performing on dynamic environments with moving peaks of optima. The
origin of the difficulty lies in the double problems of outdated memory due to environment
dynamism, and diversity loss, due to convergence. From these, diversity loss is critical for
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PSO since, the time taken for a partially converged swarm to re-diversify, find the shifted
peak, and then re-converge is quite deleterious to its performance [Bla07]. Clearly, either
a re-diversification mechanism must be employed at (or before) function change, and/or an
indication of diversity can be measured and used throughout the run.

In this sense, we plan to design new mechanisms for either re-diversification or diversity
maintenance in PSO based on: randomization, repulsion, dynamic, restarting, and multi-
populations; with the aim of facing real word problems characterizing dynamic environments.
An example may consists on the optimal Timing Programs of Signal Light on changing road
traffic conditions in smartcities.

4. Reducing Vehicle Emissions and Fuel Consumption. Nowadays, current cities are
continuously increasing levels of pollution emissions and fuel consumption derived from the
road traffic directly affect to the air quality, the economy, and specially the health of citizens.
Therefore, improving the traffic flow is a mandatory task in order to mitigate such critical
problems.

Following our research study on Timing Programs of Signal Lights, we will investigate on
improving the traffic flow of vehicles with the global target of reducing their fuel consumption
and gas emissions (CO2 and NOx). Therefore, using the standard traffic emission model
HBEFA [CTS+05] in our algorithmic proposals, we hope to obtain significant reductions
in terms of the emission rate and the total fuel consumption, in comparison with timing
programs of signal lights predefined by experts close to real ones.

5. Deploying Swarms in Smart Devices. We are also interested in formulating new swarm
intelligent models capable of evolving as collaborative agents running in communicating
portable devices in smart communication networks. The idea is to deploy connecting par-
ticles as agents acting in smartphones, tablets, laptops, routers, and other devices, to carry
out a collective task, giving rise to modern applications in different areas of interest. In this
way, we will implement swarms of agents for corporative company devices collecting infor-
mation about traffic, software viruses, locations and logistic issues, human flow, commercial
preferences, tourist interest points, etc.

All these will lead us create modern applications based on a swarm intelligence design model.
In this sense, we will try to directly using real life testing scenarios, with the final aim of assisting
the human expert in the decision making process.
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Appendix A

Publications Supporting this PhD
Thesis Dissertation

In this appendix, we present the set of scientific articles that have been published during the
years in which this thesis has been developed. These publications speak for the interest, validity,
and impact on the scientific community and literature of the work contained in this thesis, since
they have appeared in impact fora, and have been subjected to peer review by expert researchers.
Figure A.1 shows a diagram of the different publications and their relationships with the contents
of the work.

Figure A.1: Diagram of publications generated in the scope of this PhD Thesis
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[11] J. Garćıa-Nieto, E. Alba. Swarm Intelligence Approach for Accurate Gene Selection in DNA
Microarrays. ERCIM-NEW Special Theme: Computational Biology. 82, pp. 26-28, 2010.
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[17] E. Alba, J. Garćıa-Nieto, J. Taheri, and A. Zomaya. New Research in Nature Inspired
Algorithms for Mobility Management in GSM Networks. In LNCS of the Fifth European
Workshop on the Application of Nature-inspired Techniques to Telecommunication Networks
and other Connected Systems, EvoWorkshops08, Springer-Verlag, pp. 1-10, Napoli Italy,
2008.

International Conferences
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[31] E. G. Talbi, L. Jourdan, J. Garćıa-Nieto and E. Alba. Slection dattributs de puce ADN par
essaim de particules. In Optimisation par Essaim Particulaire (OEP 2007), Paris, France, 23
April, 2007.

National Conferences
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[34] J. Toutouh, J. Garćıa-Nieto, E. Alba. Configuración Optima del Protocolo de Encami-
namiento OLSR para VANETs Mediante Evolución Diferencial. VII Congreso Español sobre
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Appendix B

Resumen en Español

B.1 Introducción

Uno de los aspectos más importantes en la investigación en ciencias de la computación consiste en el
análisis y diseño de algoritmos de optimización para la resolución de problemas de alta complejidad
(catalogados como NP-Duros) de una manera eficiente, tanto en calidad de la solución como en el
coste en recursos computacionales. Las metaheuŕısticas [Gol89, Glo03] son un tipo de algoritmos
de optimización que, por lo general, son capaces de obtener soluciones de gran calidad (muchas
veces la solución óptima) en un tiempo aceptable. Por tanto, en el campo de la industria, el uso de
este tipo de técnicas es cada vez más extendido, contando ya con un gran número de aplicaciones
prácticas en multitud de dominios de especialización.

Dentro del contexto de las metaheuŕısticas, los algoritmos de Inteligencia Colectiva o Swarm
Intelligence (SI) están siendo objeto de gran interés en los últimos años. Estas técnicas modelan el
comportamiento emergente de agentes simples aunque actuando en coletividad, con la intención de
desarrollar el proceso de aprendizaje para la resolución de problemas complejos. En particular, los
algoritmos de Cúmulos de Part́ıculas o Particle Swarm Optimization (PSO) son unos de los más
populares dentro de la familia del swarm intelligence, ya que desde su diseño original propuesto
por Kennedy y Eberhart en 1995 [KE95], han sido objeto de estudio en multitud de publicaciones
y han sido aplicados a un gran número de problemas de optimización, tanto de ı́ndole púramente
académica, como a problemas reales encontrados en la industria. Sin embargo, a pesar de esta
intensa investigación, todav́ıa existen oportunidades de estudio sobre este tópico, ya que en ciertos
tipos de problemas, el algoritmo PSO muestra deficiencias susceptibles de mejora. Además, aún
podemos encontrar un gran número de aplicaciones de la vida real para las que su rendimiento
todav́ıa no ha sido evaluado.

Nuestra motivación en este trabajo de tesis tiene una doble vertiente. Por una parte, estamos
interesados en diseñar nuevas propuestas de algoritmos de cúmulos de part́ıculas que resuelvan, o
que en la medida de lo posible, sean capaces de mitigar las principales desventajas que presentan
estos algoritmos. A tal respecto, hemos utilizado una metodoloǵıa para el análisis del compor-
tamiento interno de estos algoritmos y para identificar los principales problemas que manifiestan
las versiones actuales de PSO. De cara a la evaluación de la efectividad de las nuevas propuestas,
hemos llevado a cabo estudios comparativos desde dos puntos de vista: la calidad de la solución y la
escalabilidad en términos de dimensionalidad de los problemas a resolver (número de variables de
decisión). En este sentido, hemos seguido los procedimientos experimentales espećıficos de bench-
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marks de funciones estándares (CEC’05, SOCO’10, DTLZ, etc.) y hemos comparado nuestras
propuestas algoŕıtmicas con aquellas metaheuŕısticas más exitosas en el estado del arte actual. Por
otra parte, tenemos como objetivo también la resolución de problemas complejos presentes en la
industria mediante versiones de PSO, para de esta manera determinar la adaptabilidad de este
algoritmo a las diferentes representaciones y posibles escenarios de optimización, con tiempo com-
putacional limitado y con el requisito del manejo de grandes cantidades de datos. En concreto, nos
hemos enfocado en esta tesis en tres aplicaciones reales de gran complejidad, abarcando campos
muy diferenciados de la industria: la Selección de Genes en Microarrays de ADN, la Configuración
Óptima de Protocolos de Comunicación para VANETs y la Programación óptima de Ciclos en
Semáforos para la gestión del tráfico rodado.

B.2 Organización de la Tesis

Como ya hemos comentado, este trabajo de tesis tiene una doble perspectiva: propuesta algoŕıtmica
y dominio de aplicación, lo cual se refleja en su estructura como documento global. Aśı, esta
memoria se ha organiza en cinco partes. En la primera parte presentamos los fundamentos de base
para este trabajo, es decir, las metaheuŕısticas como familia de técnicas avanzadas de resolución, los
algoritmos de cúmulos de part́ıculas como técnica principal objeto de estudio y la metodoloǵıa que
hemos empleado para evaluar y validar los resultados numéricos. La segunda parte está dedicada
al análisis, diseño y evaluación de nuestras propuestas algoŕıtmicas. En esta parte se realiza
además un gran número de comparativas con el estado del arte en el contexto de benchmarks de
funciones estándares. La tercera parte trata los problemas reales abordados describiendo: modelos,
formulaciones, instancias, escenarios y validación resultados. Además, se realiza la revisión de la
literatura relacionada y una recapitulación de las propuestas formuladas por otros autores para
estos problemas, o en su caso, para problemas relacionados en el dominio. En la cuarta parte
agrupa las principales conclusiones extráıdas a lo largo de la tesis y ofrece los comentarios globales
y trabajo futuro. Finalmente, la quinta parte contiene apéndices relativos a las publicaciones que
han surgido durante el desarrollo de esta tesis, aśı como este resumen en español.

A continuación, se describen los contenidos de cada caṕıtulo, los cuales pasaán a ser desarro-
llados más en detalle en las siguientes secciones.

• Parte I. Motivaciones y Fundamentos

– El Caṕıtulo 2 ofrece una introducción sobre los conceptos principales en el campo de
la optimización y las metaheuŕısticas, incluyendo una clasificación de estas técnicas y
haciendo especial mención sobre los algoritmos de inteligencia colectiva. En la última
sección se describe el procedimiento estad́ıstico de validación de resultados seguido en
los experimentos llevados a cabo en cada investigación.

– En el Caṕıtulo 3 se presenta el algoritmo Particle Swarm Optimization. Se describen
las versiones canónica y estándar de PSO, realizando formulaciones de los modelos
teóricos y enumerando las versiones de PSO más representativas, aśı como otras técnicas
relacionadas. La última sección se centra en los benchmarks estándares de funciones de
optimización utilizadas para la evaluación de las nuevas propuestas y su comparación
con otros algoritmos.
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• Parte II. Propuestas Algoŕıtmicas y Validación

– El Caṕıtulo 4 trata sobre la hibridación de PSO con operadores diferenciales presentes
en DE para proponer el algoritmo DEPSO. En primer lugar se describe la formulación
del nuevo algoritmo y directamente se presenta el marco experimental mediante el cual
se evalua su funcionamiento. En este marco, se utiliza un conjunto muy numeroso de
funciones pertenecientes a los benchmarks: CEC’05 [SHL+05] test suite y las funciones
nosisy/noiseless de BBOB’09 [HAFR09b]. Con todo ésto se realiza una serie de análisis
respecto a las caracteŕısticas de las distintas funciones y comparativas con otros algo-
ritmos constituyentes del estado del arte.

– El Caṕıtulo 5 presenta el algoritmo Restarting PSO con Modulación de Velocidad
(RPSO-vm). Este algoritmo fue diseñado para el abordaje de problemas de optimización
continua de gran escala. La validación emṕırica, en forma de test de escalabilidad se
realiza en el marco propuesto en el número especial de la revista Soft Computing, de-
nominado SOCO’10 [HLM10b]. En este caṕıtulo se realiza además un análisis en cuanto
al coste computacional requerido por la propuesta.

– En el Caṕıtulo 6 se hace un recorrido por las versiones de PSO multi-objetivo (MOPSO)
más interesantes y se evaluan en el marco de tres familias de problemas de optimización
continua. En este contexto se describe nuestra propuesta, que consiste en un algoritmo
MOPSO con modulación de velocidad (SMPSO) y se evalua con respecto a aquellas
versiones evaluadas anteriormente y con respecto a NSGAII.

– El Caṕıtulo 7 contiene una de las investigaciones más interesantes realizadas para esta
tesis. Comienza mediante un concienzudo análisis del número espećıfico de part́ıculas
informandoras que pueden dotar a PSO con un proceso de aprendizaje optimizado.
Este análisis se realiza sobre un gran número de funciones de optimización. Tras éste,
se realiza un nuevo análisis en tiempo de ejecución desde el punto de vista de la evolv-
abilidad [GNA12b], con la intención de arrojar luz sobre por qué cierto número de infor-
madores (alrededor de séis) es la mejor općıón en la formulación de PSO. Finalmente,
se hibrida el algoritmo resultante, PSO6 como método de base, con MTS [TC08] para
generar la nueva propuesta algoŕıtmica PSO6-Mtsls, destinada a formar parte del es-
tado del arte actual para un extenso conjunto de funciones problema en los benchmarks
CEC’05+SOCO’10.

• Parte III. Aplicaciones Reales

– El Caṕıtulo 8 presenta el problema de la Selección de Genes en Microarrays de ADN,
junto con el algoritmo Parallel Multi-Swarm Optimization (PMSO) propuesto para abor-
dar tal problema de manera eficiente. Este algoritmo está basado en la versión binaria
Geometric PSO (GPSO), cuyo modelo de optimización posee probadas cualidades para
la selección de caracteŕısticas. Se analiza la efectividad de la nueva propuesta sobre cua-
tro conjuntos de datos conocidos en el área, descubriendo nuevos subconjuntos de genes
con gran poder clasificador. En este sentido, se realiza con posterioridad una serie de
comparativas con el estado del arte en términos de esfuerzo computacional, porcentaje
de reducción y ratio de clasificación. Finalmente, se presenta un análisis desde el punto
de vista biológico para validar los genes más frecuentemente seleccionados con respecto
a los trabajos iniciales en los que fueron catalogados por expertos en el área.

– El Caṕıtulo 9 aborda la aplicación de PSO a la Configuración Óptima de Protocolos
para VANETs. Este caṕıtulo comienza con una revisión de la literatura asociada y con
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la formulación del problema en relación al protocolo de comunicación VDTP, objeto de
optimización. Tras esto se realizan una serie de análisis y comparativas desde los enfo-
ques de la calidad y servicio de la red y la escalabilidad del problema. Todo esto sobre
diferentes modelos de escenario realistas. Las configuraciones de VDTP optimizadas
se comparan a su vez con las aplicadas por los expertos en el marco de aplicaciones
VANETs reales.

– En el Caṕıtulo 10 se presenta al problema de la Programación Óptima de Ciclos de
Semáforos en entornos de tráfico urbano. Tras la revisión de la literatura relacionada y
la formulación del problema, se presenta la estrategia de optimización, la cual consta de
un PSO para optimización discreta-entera con el simulador de tráfico SUMO. Para la
evaluación de soluciones se han generado instancias realistas de las ciudades de Málaga y
Bah́ıa Blanca. Se realizan entonces una serie de análisis de rendimiento y comparativas
desde el punto de vista de la calidad de la solución y sobre diferentes escalas de escenarios
simulados. Los programas de ciclos resultantes se comparan además con los utilizados
por los expertos en este área de aplicación.

• Parte IV. Conclusiones

– El Caṕıtulo 11 contiene una revisión global de este trabajo de tesis, agrupando las
principales conclusiones obtenidas tras cada desarrollo de investigación. Además, en
vista de los resultados obtenidos, se discuten los objetivos de la tesis en cuanto a su
grado de consecución. Finalmente, las futuras ĺıneas de investigación a seguir tras esta
tesis son también expresadas en este caṕıtulo.

• Parte V. Apéndices

– En los apéndices se organizan, en primer lugar, las publicaciones relacionadas con esta
tesis (A), este resumen en español (B), la lista de tablas, la lista de figuras, la lista de
pseudocódigos de algoritmos y finalmente, la bibliograf́ıa.

B.3 Fundamentos

En esta sección se explican unas breves nociones fundamentales sobre las metaheuŕısticas y en
concreto el algoritmo Particle Swarm Optimization.

B.3.1 Metaheuŕısticas

Las metaheuŕısticas son estrategias de alto nivel que combinan distintos métodos para explorar un
espacio de búsqueda generado por problema de optimización. Suelen definirse a modo de plantillas
que se deben rellenar empleando información espećıfica del problema sobre el cual han de aplicarse
(representación de las soluciones, operadores, etc.) y son capaces de abordar problemas cuyos
espacios de búsqueda son muy extensos, para los cuales, la utilización de otro tipo de técnicas como
las exactas, son innavordables por el coste computacional. Las metaheuŕısticas pueden clasificarse
dentro de dos categoŕıas, según el número de soluciones que manejan de forma simultánea: las
basadas en trayectoria, que tienen una única solución y las basadas en población, que manejan
un conjunto de soluciones, o población, de forma simultánea. Algunas metaheuŕısticas conocidas
del primer tipo son el recocido simulado (SA), la búsqueda tabú (TS), búsqueda greedy aleatoria
adaptativa (GRASP), la búsqueda de vecindario variable (VNS), o la búsqueda local iterada (ILS).
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Algunos ejemplos conocidos del segundo tipo son los algoritmos evolutivos (EA), los algoritmos
de estimación de distribuciones (EDA), la búsqueda dispersa (SS), la optimización por colonia de
hormigas (ACO) y la optimización por cúmulos de part́ıculas (PSO). Esta última metaheuŕıstica
constituye la base algoŕıtmica objeto de esta tesis.

En cuanto a los problemas seleccionados en esta tesis, hay dos caracteŕısticas principales de
que deben ser tenidas en cuenta y que justifican el uso de metaheuŕısticas. La primera es que
todos ellos implican una gran complejidad computacional y por lo tanto requieren de muchos
recursos para su resolución. La segunda es que, tanto en la Configuración de Protocolos VANETs
como en la Programación de Ciclos para Semáforos, el modelo de evaluación de soluciones se basa
en resultados de simulaciones a modo de “caja negra”. Por tanto, no se dispone de información
suficiente para la formulación de heuŕısticas, ya que en la mayoŕıa de las situaciones, sólo se dispone
de los rangos de las variables de decisión y un valor de adecuación para las soluciones. En este
escenario, el uso de PSO en particular aporta un valor añadido, ya que este algoritmo muestra una
rápida convergencia a soluciones aceptables, siendo esta propiedad especialmente adecuada en la
resolución de problemas pesados por el uso de simuladores externos.

B.3.2 Particle Swarm Optimization

El algoritmo de PSO [KE01] es una metaheuŕıstica poblacional inspirada en el comportamiento
social de las bandadas de pájaros y las agrupaciones de individuos en general. Fue inicialmente
diseñado para la resolución problemas de optimización continua. En PSO, cada solución potencial
al problema se codifica mediante la posición de una part́ıcula y a la población de part́ıculas se le
llama cúmulo o enjambre (swarm). Para el desarrollo de PSO seguimos la especificación Canónica
del mismo [PCG11]. En este algoritmo, cada posición de part́ıcula xi se actualiza cada iteración t
mediante la Ecuación B.1.

xt+1
i ← xt

i + vt+1
i (B.1)

donde el término vt+1
i es la velocidad de la part́ıcula, que viene dada por la Ecuación B.2.

vt+1
i ← ω · vt

i + U [0, ϕ1] · (p
t
i − xt

i) + U [0, ϕ2] · (b
t
i − xt

i) (B.2)

En esta fórmula, pt
i es la mejor solución personal que la part́ıcula i ha encontrado durante su

proceso, bt
i es la mejor part́ıcula en un vecindario de n part́ıculas (conocida como el mejor social)

aleatoriamente seleccionado (uniforme) del cúmulo y w es el factor de inercia de la part́ıcula (que
controla el balance entre exploración-explotación). Por último, ϕ1 y ϕ2 son los coeficientes de
aceleración, los cuales controlan el efecto relativo de los mejores personal y social de la part́ıcula,
mientras que U [0, ϕk] es un valor aleatorio uniforme en el intervalo [0, ϕk], k ∈ 1, 2. Este último
se genera de nuevo para cada componente en el vector de velocidad y para cada iteración.

Una versión equivalente para el cálculo de la velocidad fue calculada anaĺıticamente en el estudio
desarrollado en [CK02], en el cual se utiliza un coeficiente de constricción χ en lugar de la inercia
para dar estabilidad a la dinámica del modelo en el momento de la convergencia y evitar aśı el
fenómeno de la oscilación, como se refleja en la Ecuación B.3.

vt+1
i ← χ ·

(
vt
i + U t[0, ϕ1] · (p

t
i − xt

i) + U t[0, ϕ2] · (b
t
i − xt

i)
)

(B.3)

χ←
2

|2− ϕ−
√
ϕ2 − 4ϕ|

, with ϕ←
∑

i

ϕi, and ϕ > 4 (B.4)
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Algorithm 12 Pseudocódigo de PSO Canónico

1: S ← inicializaCumulo(Ss)
2: while t < MAXIMUMt do
3: for cada part́ıcula xt

i en S) do
4: vt+1

i ←actualizaVelocidad(ω,vt
i ,x

t
i, ϕ1,p

t
i, ϕ2,b

t
i) //Ecuaciones B.2 y B.4

5: xt+1
i ←actualizaPosicion(xt

i ,v
t+1
i ) //Ecuación B.1

6: evaluate(xt+1
i )

7: pt+1
i ←actualizaMejorLocal(pti)

8: end for
9: bt+1 ←actualizaLeader(bt)

10: end while

El coeficiente de constricción χ se calcula mediante la Ecuación B.4, a partir de los dos co-
eficientes de aceleración ϕ1 y ϕ2, siendo la suma de éstos dos coeficientes la que determina qué
valor de χ usar. Por lo general se usan valores, ϕ1 = ϕ2 = 2.05, dando como resultado ϕ = 4.1, y
χ = 0.7298 [ES00, Tre03]. Con estos valores, el método de constricción propuesto por Clerc [CK02]
consigue la convergencia del algoritmo, ya que la amplitud de la oscilación de las part́ıculas de-
crece a lo largo del proceso de optimización. Este método aporta la ventaja de no tener que
utilizar V max, ni otros valores de restricción de parámetros para prever la explosión en tiempo
de búsqueda. No obstante, mediante otros experimentos [ES00] se analizó al mismo tiempo que
la opción de dar valores a V max como Xmax, es decir, el rango dinámico de cada variable por
cada dimensión. El resultado en este caso es un PSO sin parámetros espećıficos al problema,
denominado en este estudio como el Canónico PSO.

El pseudocódigo de Algoritmo 12 describe el PSO Canónico. Este algoritmo comienza con
la inicialización de las part́ıculas del cúmulo (Ĺınea 1). Los elementos correspondientes de cada
posición de part́ıcula (solución) son inicializados con valores aleatorios (por lo general siguiendo
una distribución uniforme). Para un número máximo de iteraciones, cada part́ıcula se mueve a
través del espacio de búsqueda mediante la actualización de su velocidad y posición (Ĺıneas 4, 5,
y 7), se evalúa (Ĺınea 6) y su mejor posición personal se actualiza también (Ĺınea 9). Finalmente,
el algoritmo devuelve como resultado la mejor part́ıcula encontrada.

Tradicionalmente, existe en la literatura relacionada un gran número de trabajos en los cuales
los algoritmos propuestos se comparan con versiones de PSO llamadas por los autores como “el
estándar PSO”, aunque en realidad, si se examinan detenidamente, podemos comprobar cómo
estas versiones no son siempre la misma ni utilizan los mismos parámetros. Este hecho motivó a un
grupo de investigadores en el área, bajo la supervisión de James Kennedy y Maurice Clerc, a ofrecer
una versión consensuada y validada de estándar PSO para ser utilizado por los investigadores en
sus experimentos [PCG11]. La intención de este estándar no es la de ser el mejor de todas las
versiones, si bien pretende ser más una sugerencia de propuesta cercana a la versión original de
1995, aunque actualmente incorpora modificaciones basadas en avances recientes. De este modo,
en 2006 apareció el primer estándar de PSO el cual tráıa pocos cambios con respecto a la versión
canónica. Sin embargo, en los siguientes estándares, 2007 y 2011, ya incorporan una serie de
mejoras significativas, sobre todo respecto a la invarianza a la rotación de problemas.

Al mismo tiempo en el que se definieron las versiones estándares, sobre todo en la última década,
aparecieron un gran número de versiones que incorporaban nuevas formulaciones y mecanismos
adicionales con la doble motivación de: mejorar su comportamiento (competitividad) y adaptar
PSO a condiciones particulares de cada problema (versatilidad). En este sentido, se han elaborado
revisiones del estado del arte y taxonomı́as [PKB07, SM09] en las que se reúnen más de cien
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versiones de PSO, que fueron clasificadas y catalogadas por similitud de propiedades. Entre estas
categoŕıas podemos clasificar PSO por: diferentes codificación de soluciones [KE97] [MCP07], hibri-
dación [MdOSVdED11], nuevas formulaciones de velocidad [Ken03] [LQSB06] [ZZLS11] [LYN12],
topoloǵıas de vecindario y estructura de cúmulo [MKN04] [GNA11a].

B.4 Propuestas Algoŕıtmicas y Estudios Experimentales

En esta sección se presentan los estudios anaĺıticos y propuestas algoŕıtmicas resultantes de esta
tesis. Estos estudios consisten fundamentalmente en generación de nuevos h́ıbridos, nuevas formu-
laciones de dinámicas de movimiento de part́ıculas, tests emṕıricos con benchmarks estándares de
funciones de optimización continua y comparaciones con algoritmos en el top del estado del arte.

B.4.1 Algoritmo Hı́brido DEPSO

Se trata de una nueva propuesta algoŕıtmica que utiliza como método base el procedimiento de
aprendizaje de PSO, aunque utilizando para el cálculo de la velocidad el esquema de variación
diferencial de DE. En este caso, el factor de variación se compone por dos vectores part́ıculas
elegidos del cúmulo de manera aleatoria siguiendo el esquema DE/rand/1 del DE Canónico. De
esta forma, para cada posición de part́ıcula del cúmulo xi, se genera un vector diferencial (xt

r1−x
t
r2),

siendo las part́ıculas xt
r1 y xt

r2 seleccionadas aleatóriamente (semilla uniforme) cumpliendo la
restricción it 6= r1t 6= r2t. La nueva velocidad vt+1

i de dicha part́ıcula i se calcula mediante la
siguiente ecuación:

vt+1
i ← ω · vt

i + F · (xt
r1 − xt

r2) + U t[0, ϕi] · (b
t
i − xt

i) (B.5)

La principal diferencia con respecto al PSO original, radica en que se realiza la operación de
variación diferencial en lugar de implementar la operación de influencia personal t́ıpica de PSO,
con el mejor personal de cada part́ıcula (pt

i −xt
i) expresado en la Ecuación B.2. Tras el cálculo de

la velocidad, se realizan los operadores de cruce y selección t́ıpicos de todas las versiones estándares
de DE, para finalmente generar la nueva posición de part́ıcula xt+1

i .

Para evaluar DEPSO, hemos realizado una extenso estudio experimental en el marco de dos
importantes sesiones especiales de optimización continua, con diferentes conjuntos de funciones:
MAEB’09/CEC’05 [SHL+05] y GECCO BBOB’09 [HAFR09a] sumando un total de 74 funciones de
optimización diferentes con dimensiones: 2, 3, 5, 10, 20, 30 y 40 variables. Respecto al conjunto de
funciones de MAEB’09, la principal observación consiste en que el uso de operadores diferenciales
provee al PSO con una mejor capacidad de búsqueda en funciones no separables, sobre las cuales,
PSO no suele mostrar un buen comportamiento. Además, DEPSO mostró mejores resultados que
DE en un amplio número de funciones para dimensiones 10 y 30. Para las funciones sin ruido
“noiseless” del benchmark BBOB’09, nuestra propuesta obtuvo un buen comportamiento en las
separables y las débilmente estructuradas. En cuanto a las funciones con ruido “noisy” en el mismo
benchmark BBOB’09, DEPSO consiguió mejores resultados para las funciones de ruido moderado
y las multimodales severas. El hecho de utilizar exactamente la misma parametrización para todas
las funciones y dimensiones, junto con el relativo pequeño número de evaluaciones empleadas, nos
lleva a sospechar que el comportamiento de DEPSO podŕıa mejorar de manera significativa para
funciones ruidosas con mayores dimensiones.
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Figure B.1: Resultados en cuanto a la escalabilidad para DE, CHC, G-CMA-ES y RPSO-vm para
las funciones f2, f9, f14 y f19. El eje Y muestra los resultados en escala logaŕıtmica. El eje X
muestra las dimensiones

B.4.2 PSO con Modulación de Velocidad: Test de Escalabilidad

Uno de los mecanismos que hemos diseñado para PSO en el contexto de esta tesis consiste en la
modulación aplicada al vector de velocidad (previamente al cálculo de la nueva posición), que unido
a una estrategia de reinicio, nos permite mejorar el comportamiento de este algoritmo cuando nos
enfretemos a problemas de gran dimensionalidad. Nuestra hipótesis es que estas dos estratégias
pueden ayudar al proceso de búsqueda de PSO a evitar una rápida convergencia y redirigir las
part́ıculas hacia áreas más prometedoras en el espacio de búsqueda.

Tras la fase de experimentación, en el contexto del benchmark SOCO’10 [HLM10b] para op-
timización continua de gran escala, hemos comprobado que nuestra propuesta, a la cual hemos
llamado RPSO-vm (Restarting PSO with Velocity Modulation) [GNA11b],es escalable, aśı como
altamente competitiva respecto a algoritmos punteros en el estado del arte. En concreto, podemos
puntualizar que RPSO-vm es mejor que PSO, aśı como mejor que este algoritmo con cada uno
de los mecanismos incorporados de manera separada, para todas las dimensiones contempladas
(15, 100, 200, 500 y 1000 variables). De hecho, nuestra propuesta resultó ser el segundo mejor
algoritmo para todas las dimensiones y estad́ısticamente similar al mejor de todos en comparación
con DE, CHC y G-CMA-ES. Estos tres algoritmos fueron tomados como referencia en el marco
experimental recomendado en SOCO’10 ya que constituyen tres potentes optimizadores con buen
funcionamiento ya demostrado en otros benchmarks (CEC’05, CEC’08, BBOB’09, etc.); nuestra
propuesta además obtuvo los mejores resultados para un gran número de funciones con diferentes
propiedades: óptimo desplazado, multimodales, variables no separables y funciones compuestas.
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Algorithm 13 Pseudocódigo de MOPSO genérico

1: S ←initializaCúmulo(Ss)
2: A←initializaArchivoĹıderes()
3: calculaCalidadĹıderes(A)
4: while t < MAXIMUMt do
5: for cada part́ıcula i en S do
6: bt ← seleccionaĹıder(At)
7: vt+1

i ←actualizaVelocidad(ω,vt
i ,x

t
i, ϕ1,p

t
i, ϕ2,b

t) //Equations 3.2 o 3.3
8: xt+1

i ←actualizaPosición(xt
i ,v

t+1
i ) //Equation 3.1

9: xt+1
i ← perturbación(xt+1

i )
10: evaĺıa(xt+1

i )
11: pt+1

i ←actualiza(pt
i)

12: end for
13: At+1 ←actualizaArchivoĹıderes(At)
14: calculaCalidadĹıderes(At+1)
15: end while

Por último, en cuanto a la escalabilidad, la observación más interesante reside en el hecho de que,
como muestran las gráficas de Figure B.1 para las funciones f2, f9, f14 y f19 de SOCO’10, RPSO-vm
desarrolla una mejor búsqueda para las grandes dimensiones que en las más pequeñas.

B.4.3 PSO con Modulación de Velocidad: Versión Multiobjetivo

Relacionado con el punto anterior, hemos evaluado seis versiones de algoritmos de cúmulo multi-
objetivo (MOPSO) sobre tres conjuntos de problemas académicos bien conocidos en el área:
ZDT [ZDT00], DTLZ [DTLZ05] y WFG [HHBW06]; utilizando para ello tres indicadores de calidad
diferentes: epsilon (I1ǫ+) [KTZ06] spread (∆) [DPAM02] e hypervolume (HV ) [ZT99].

En el diseño de PSO para adaptarlo al menejo de problemas multi-objetivo hay que tener en
cuenta una serie de premisas, siendo la más importante de ellas el hecho de que la solución a un
problema con múltiples objetivos es en este caso un conjunto de soluciones no dominadas. Por
tanto, se deben tener en cuenta las siguientes consideraicones [RSC06]:

1. Cómo seleccionar las part́ıculas que actuarán como ĺıderes del conjunto de no dominadas.

2. Cómo gestionar las soluciones no dominadas a lo largo del proceso de búsqueda

3. Cómo mantener la diversidad y retrasar la convergencia temprana.

El pseudocódigo de un algoritmo MOPSO genérico se expresa en Algorithm 13. Tras inicializar
el swarm (Ĺınea 1), se utiliza un archivo externo para guardar los ĺıderes, los cuales son selec-
cionadas como las part́ıculas no dominadas en el swarm. Tras inicializar el archivo de ĺıderes
(Ĺınea 2), se selecciona alguno de éllos mediante el cálculo de alguna de las medidas de calidad
para servir de lider para cada part́ıcula. Ya dentro del bucle principal del algoritmo, las part́ıculas
con sus velocidades y posiciones son actualizadas (Ĺıneas 7-8). Opcionalmente se realizará una op-
eración de mutación (factor de turbulencia) (Ĺınea 9); entonces, la part́ıcula se evalua y se actualiza
su correspondiente pbest (Ĺıneas 10-11). Tras cada iteración, el conjunto de ĺıderes es actualizado
y las medidas de calidad son calculadas de nuevo (Ĺıneas 13-14). Por último, cuando se alcanza la
condición de parada, se devuelve el archivo de ĺıderes como resultado del proceso de búsqueda.
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Figure B.2: Histograma de mejores rendimientos (número de Hits). A la derecha se muestran las
medianas de coeficientes fdc para as diferentes versiones PSOk, para la función 25 (CEC’05)

En este contexto, hemos observado que OMOPSO [RSC05] es claramente la versión con mejor
comportamiento de los algoritmos comparados. Sin embargo, los resultados mostraron además que
ninguna versión de PSO multi-objetivo fue capaz de encontrar frentes de Pareto adecuados para
tres de los problemas testados, todos ellos de espacio de búsqueda multimodal. No obstante, tras
analizar esta desventaja decidimos aplicar el método de modulación de la velocidad para mejorar
la capacidad de búsqueda también en estos problemas. El algoritmo resultante, al cual llamamos
SMPSO y evaluamos con los mismos conjuntos de problemas, es capaz de obtener mejoras signi-
ficativas incluso para entornos multimodales, superando incluso el rendimiento de otros algoritmos
en el estado del arte como OMOPSO y NSGA-II.

B.4.4 Estudio del Número Óptimo de Informadores en PSO

En el análisis del modelo de aprendizaje que desarrolla PSO, pretendemos en esta tesis arrojar
luz sobre el número adecuado de part́ıculas que intervienen como “informantes” para el progreso
de cada part́ıcula del cúmulo. De este modo, conseguimos una configuración optimizada de la
dinámica de movimiento las part́ıculas, es decir, de su proceso de búsqueda, para un gran número
de problemas de optimización con caracteŕısticas heterogéneas.

En este sentido, hemos generalizado el número de part́ıculas vecinas informantes que intervienen
en el cálculo de nuevas part́ıculas en PSO. Para esta tarea, hemos creado una nueva versión de
PSO “informado”, al cual hemos llamado PSOk, con la posibilidad de manejar cualquier tamaño
de vecindario k, desde 1 informador hasta todo el cúmulo como conjunto informante para crear
nuevas part́ıculas (del mismo modo que la configuración de FIPS-ALL). La nueva propuesta, con
todas sus variantes ha sido analizada mediante la utilización de métricas de evolvabilidad.

Toda la experimentación y comparativas se han realizado en el marco del benchmark de fun-
ciones de CEC’05, bajo el cual se analizaron, además de la influencia del número de informantes,
la influencia del tamaño de cúmulo y la dimensionalidad de los problemas abordados. Como
conclusión principal podemos extraer el hecho de que, efectivamente, un número de 6 part́ıculas
informadoras en el vecindario de cada part́ıcula proporciona un mayor rendimiento al algoritmo,
para prácticmante todas las funciones de optimización abordadas (véase la Figura B.2). De hecho,
por una parte hemos comprobado que utilizar menos informantes (<4) en PSOk lleva al algoritmo
a desarrollar una correlación fitness-distancia al óptimo positiva, aunque generando soluciones con
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fitness de baja calidad y lejos del óptimo global. Por otra parte, con más de 10 informantes,
las soluciones se encuentran también correladas, aunque concentradas en regiones del campo de
búsqueda de poco interés. Por tanto, es cuando se utilizan 6 informantes cuando se obtiene el mejor
balance entre la calidad del fitness y la distancia al óptimo. Este comportamiento se puede gene-
ralizar además independientemente del tamaño del cúmulo, aśı como la dimensión del problema
bordado, dentro del marco de CEC’05.

B.4.5 Nueva Versión: PSO6 con MTS

Basados en los análisis anteriormente presentados, hemos hibridado la propuesta resultante, PSO6,
con el reciente método de búsqueda local Multiple Trajectory Search (MTS), para tratar de man-
era más eficiente los problemas que muestran no separabilidad de variables. Hemos evaluado el
algoritmo propuesto, llamado PSO6-Mtsls, en el marco experimental de los benchmarks CEC’05
y SOCO’10, sumando aśı 40 funciones de optimización continua. Tras los experimentos realizados
podemos comprobar como PSO6-Mtsls muestra mejores resultados (validados estad́ısticamente)
que IPSO-Powell y G-CMA-ES, además de obtener un mejor ranking que IACOr-Mtsls y IPSO-
Mtsls. Todos estos algoritmos pueden ser catalogados como entre los más prominentes en la
literatura relacionada. A modo de conclusión, podemos señalar que el método de búsqueda local
Mtsls (LS1) parece ser responsable del mejor comportamiento del algoritmo h́ıbrido en las fun-
ciones multimodales no separables, mientras que el procedimiento de aprendizaje que desarrolla
PSO6 proporciona un mejor comportamiento en las funciones rotadas.

B.5 Aplicación a Problemas Reales

En esta sección se presentan las propuestas algoritmicas encaminadas a la resolución de problemas
reales de gran complejidad: Selección de Genes en Microarrays de ADN, Configuración de Proto-
colos de Comunicación en VANETs y Programación de Ciclos de Semáforos. Además se incluyen
las formulaciones, estratégias de optimización e instancias diseñadas para estos problemas.

B.5.1 Selección de Genes en Microarrays de ADN

Para afrontar el problema de la Selección de Genes en Microarrays de ADN, hemos propuesto un
algoritmo, al cual hemos llamando Parallel Multi-Swarm Optimizer (PMSO), que consiste en una
serie de Geometric PSOs (GPSO) distribuidos a través de una topoloǵıa de islas comunicantes en
anillo. PMSO utiliza un clasificador de máquinas de vectores de soporte (Support Vector Machine,
SVM) para medir la calidad de los subconjuntos de genes seleccionados. El operador de cruce con
máscara a partir de tres padres caracteŕıstico de GPSO realiza la labor de selección de genes para
la formación de subconjuntos en las soluciones.

Hemos llevado a cabo el estudio experimental de PMSO con diferentes topoloǵıas de pobla-
ciones en las islas, para cuatro conjuntos de datos relativos a expresiones de genes en Microarrays
bien conocidos por la comunidad cient́ıfica. En las soluciones resultantes podemos identificar genes
recurrentes que nuestro trabajo sugiere como significativos, respecto a todos los demás en cada
Microarray. En particular, respecto a los conjuntos de datos Leukemia AML ALL y Lymphoma,
podemos confirmar que los genes más frecuentemente seleccionados están dentro de aquellos conjun-
tos etiquetados como más relevantes en las publicaciones originales de dichos Microarrays (Golub
et al. [GST+99] y Alizadeh et al. [Ali00], respectivamente). La Tabla B.1 muestra el conjunto
de 11 genes destacados en Golub et al., que también fueron seleccionados por PMSO con mayor
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Table B.1: Conjunto de 11 genes destacados en Golub et al., también seleccionados por PMSO con
mayor frecuencia para Leukemia

Ranking Indice Identificador Gen Descripción

1 4847 X95735 at Zyxin
5 1834 M23197 at CD33 antigen (differentiation antigen)
6 2020 M55150 at FAH Fumarylacetoacetate
8 3320 U50136 rna1 at Leukotriene C4 synthase (LTC4S) gene
15 4499 X70297 at CHRNA7 Cholinergic receptor, nicotinic, alpha polypeptide 7
14 2267 M81933 at CDC25A Cell division cycle 25A
16 5039 Y12670 at LEPR Leptin receptor
18 6376 M83652 s at PFC Properdin P factor, complement
20 6041 L09209 s at APLP2 Amyloid beta (A4) precursor-like protein 2
24 2354 M92287 at CCND3 Cyclin D3
28 461 D49950 at Liver mRNA for interferon-gamma inducing factor(IGIF)

frecuencia para Leukemia. Además, en términos de esfuerzo computacional, PMSO es capaz de
mejorar la versión secuencial en un 85%, lo cual justifica de por śı el empleo de nuestra técnica
distribuida, dada la alta dimensionalidad de los conjuntos de datos al manejar Microarrays y los
requerimientos en recursos computacionales.

B.5.2 Configuración Óptima de Protocolos en VANETs

Como segunda aplicación para evaluar el comportamiento de PSO, hemos tratado la Configuración
Óptima de Protocolos (File Transfer protocol Configuration, FTC) de comunicación en redes ve-
hiculares ad hoc (VANETs). Debido a que este problema ha sido afrontado por primera vez en
esta tesis mediante metaheuŕısticas, hemos utilizado también otros algoritmos de base: GA, DE,
SA, y ES; con el objetivo de establecer comparativas y visualizar la competitividad de PSO en la
resolución de este de problema de comunicación real. Por tanto, con este objetivo en mente hemos
diseñado e implementado una estructura de optimización (véase la Figura B.3) compuesta por una
parte de PSO, aśı como los algoritmos de optimización evaluados. Por otra parte, se dispone de un
simulador de redes VANETs (ns-2 ) encargado de arrojar trazas sobre el tiempo de transmisión,
el número de packetes perdidos, la cantidad de datos intercambiados entre los nodos y otros indi-
cadores de QoS de la red, para instancias escenario realistas localizadas en las inmediaciones de la
Universidad de Málaga. El simulador acta con el protocolo de comunicación VDTP configurado
según los parámetros optimizados en cada solución de PSO.

Los experimentos realizados revelaron que, si bien todos los algoritmos evaluados fueron capaces
de dar soluciones eficientes al problema FTC, PSO mostró un rendimiento estad́ısticamente mejor
que las demás técnicas para la instancia Urban, y estad́ısticamente mejor que DE y ES para la
instancia Highway. El análisis de escalabilidad desarrollado mostró que PSO mantiene los mejores
resultados para las instancias mayores. Desde el punto de vista de la utilización de las configu-
raciones resultantes en entornos reales, PSO puede reducir en un 19% el tiempo de transmisión
en la instancia Urban y un 25.43% en Highway, respecto a las configuraciones utilizadas por el
personal experto del proyecto europeo CARLINK1. Como resultado global, podemos destacar que
los mayores ratios efectivos de datos enviados obtenidos por PSO (300.39 kBytes/s en comparación
con 241.5 kBytes/s de los expertos en el área) y DE (292.57 kBytes/s) en el entorno urbano, nos
lleva a recomendar el uso de técnicas de inteligencia colectiva para la configuración automática de
protocolos de comunicación en VANETs.

1The CARLINK European Project http://carlink.lcc.uma.es
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Figure B.3: Estratégia de Optimización del protocolo VDTP para VANETs. Los algoritmos invo-
can al simulador ns-2 para cada evaluación de solución

B.5.3 Programación Óptima de Ciclos en Semáforos

El principal objetivo el este problema consiste en encontrar programas de ciclos optimizados
para todos los semáforos situados en una determinada área urbana. Nos referimos a los programas
de ciclos como el periodo de tiempo en el que un conjunto de semáforos (en un cruce) permanecen
con sus estados de luces/colores. Al mismo tiempo, estos programas deben también coordinarse con
semáforos en intersecciones adyacentes, mejorando aśı el flujo de veh́ıculos que circulan conforme
a la regulación vial establecida.

Para nuestra estrategia de optimización utilizando PSO, hemos codificado los programas de
ciclos mediante un vector de números enteros (positivos) siguiendo la estructura del simulador de
tráfico SUMO, a través de la cual, cada elemento del vector (variable) representa una duración de
fase de los semáforos implicados en una determinada intersección. A pesar de su simplicidad, esta
representación permite tener en cuenta la interdependencia entre variables, no sólo para duraciones
de fase en una misma intersección, sino también para semáforos en intersecciones adyacentes.

Para evaluar cada programa de ciclos generado por nuestro algoritmo se ha formulado la sigu-
iente función de fitness, mediante la cual se considera la información obtenida de los eventos
sucedidos durante la simulación previa:

fitness(s) =

(
V∑

v=0
jv(s)

)
+

(
V+C∑
v=0

wv(s)

)
+ (C(s) · St)

V 2(s) + Cr
(B.6)

El objetivo principal (Ecuación B.6) consiste en maximizar el número de veh́ıculos que alcanzan
sus destinos (V ), aśı como minimizar el tiempo medio de viaje de todos los veh́ıculos (jv) durante el
tiempo de simulación (St). El número de veh́ıculos que llegan a sus destinos se eleva al cuadrado
(V 2) para hacerlo prioritario sobre los demás términos y factores. Obviamente, el número de
veh́ıculos que no alcanzan sus destinos y continuan circulando durante la simulación (C) debe ser
minimizado. El tiempo medio de viaje se refiere a la agregación de los tiempos de viaje de todos los
veh́ıculos que alcanzan sus destinos durante el tiempo de simulación. Por el contrario, los veh́ıculos
que no completen sus viajes serán considerados con tiempo de viaje igual al tiempo de simulación,
lo cual implica una penalización adicional. Otro importante término considerado en esta función
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es el estado en el que los semáforos están en un preciso momento, ya que éste influencia el tiempo
que cada veh́ıculo debe parar y esperar (wv), con el consecuente retardo en su tiempo de viaje.

Finalmente, una proporción bien balanceada de colores en las duraciones de fase de los estados
debeŕıa promocionar aquellos estados con más semáforos en verde situados en v́ıas o calles con
un gran número de veh́ıculos circulando, y los semáforos en rojo situados en calles con un bajo
volumen de tráfico. La proporción de colores en casa fase (ph) de todas las intersecciones tl se
formula mediante la Ecuación B.7.

Cr =

tl∑

k=0

ph∑

h=0

sk,h ·

(
Gk,h

Rk,h

)
, (B.7)

Donde Gk,h es el número de semáforos en verde y Rk,h es el número de semáforos en rojo en
el estado h (con duración de fase sk,h) y en la intersección k. El mı́nimo valor de Rk,h es 1 para
evitar la división por cero.

Para la evaluación de las soluciones en forma de programas de ciclos, hemos desarrollado dos
instancias basadas en reas metropolitanas reales localizadas en las ciudades de Bah́ıa Blanca en
Argentina y Málaga en España. A partir de estos dos escenarios, hemos generado además 18
instancias diferentes dependiendo del número de veh́ıculos circulando (densidad de tráfico) y del
número de semáforos en funcionamiento.

Para todas las instancias, nuestra propuesta obtuvo soluciones robustas y mejores estad́ısticamente
que los dos algoritmos comparados inicialmente: SCPG, el generador de ciclos propio de SUMO
y RANDOM, un algoritmo de búsqueda aleatoria. Respecto a las otras metaheuŕısticas compara-
das: DE y el Estándar PSO 2011; nuestro PSO también mostró un mejor rendimiento. Además,
podemos resaltar que nuestro PSO escala adecuadamente en términos del número de semáforos
desplegados. En un entorno creciente de tráfico vehicular, hemos caracterizado también cómo la
tipoloǵıa del escenario puede influenciar a la escalabilidad de nuestra propuesta, mostrando PSO
resultados satisfactorios en diseños de rutas regulares, como las cuadŕıculas desarrolladas en Bah́ıa
Blanca. Como producto final, las soluciones optimizadas por nuestro PSO son capaces de mejorar
el número de veh́ıculos que llegan a sus destinos en tiempo de simulación, aśı como el tiempo medio
de viaje, para todas las instancias. En particular, para la instancia de Málaga con 30 intersecciones
y 300 veh́ıculos, la mejora obtenida ronda el 31.66% en el número de rutas completadas y el 74%
en el tiempo de viaje, respecto a SCPG. Todos estos resultados llevan aparejados una mejora real
en el tráfico de las ciudades estudiadas.

B.6 Conclusiones

En esta tesis doctoral realizamos un análisis exhaustivo del algoritmo de cúmulos de part́ıculas, y
nos centramos en el diseño y la implementación de nuevas propuestas algoŕıtmicas basadas en esta
técnica de inteligencia colectiva. Además, tratamos la resolución de problemas complejos reales
en los domı́nios de: los Microarrays de ADN, los Protocolos de Comunicación en redes VANETs
y la Programación de Ciclos en semáforos, mediante el uso de PSO. Hemos revisado los conceptos
básicos sobre metaheuŕısticas, inteligencia colectiva y en concreto, particle swarm optimization.
En este sentido, menos puesto especial interés en identificar las deficiencias que muestra PSO en
diferenes tipoloǵıas de problemas y respecto a condiciones de escalabilidad. Tras ésto, hemos prop-
uesto diseños avanzados de mecanismos con procedimientos de aprendizaje optimizados, nuevos
operadores y propuestas h́ıbridas, con el objetivo de obtener versiones mejoradas de PSO. Cada
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estudio de investigación desarrollado en esta tesis conlleva una completa experimentación, con
validación estad́ıstica de resultados y comparativas con el estado del arte actual.

Como contribuciones en el campo de PSO realizadas a lo largo de este trabajo de tesis, podemos
enumerar las siguientes: desde el punto de vista algoŕıtmico, hemos propuesto operadores de mod-
ulación de velocidad, estudiando la escalabilidad y su adaptación a versiones multi-objetivo, hemos
desarrollado nuevos h́ıbridos con Evolución Diferencial y Multiple Trajectory Search, y hemos anal-
izado minuciosamente el papel de los vecinos informadores en el proceso de aprendizaje de PSO,
resultado el número de séis part́ıculas como de especial interés para la comunidad cient́ıfica en
swarm intelligence. Desde el punto de vista de la aplicación, hemos afrontado tres problemas en
diferentes domı́nios con adaptaciones de PSO para su tratamiento espećıfico, mostrando la utilidad
de nuestras propuestas tanto en el ámbito académico, como en el industrial. Como contribución
global, podemos declarar que PSO es un algoritmo de base altamente competitivo, ca-
paz de obtener el mejor rendimiento tanto en benchmarking, como en problemas de
optimización reales y de plena actualidad.

Como futuras ĺıneas de investigación, podemos identificar dos tendencias principales. En primer
lugar, estamos centrados en la investigación de otras caracteŕısticas elementales del algoritmo PSO,
aśı como en el estudio de otros métodos complementarios para la construcción de nuevas propues-
tas h́ıbridas, capaces de tratar de manera eficaz las funciones no separables. En este sentido,
tenemos planeado realizar análisis de rendimiento mediante la utilización de nuevos benchmarks
(BBOB, CEC’13, etc.) con caracterizaciones heterogéneas de funciones y diferentes dimensiones.
En segundo lugar, estamos también interesados en la formulación de nuevos modelos de swarm in-
telligence capaces de funcionar como agentes colaborativos ejecutables en dispositivos inteligentes
sobre redes de comunicación. La idea consistiŕıa en desplegar part́ıculas que actuarán como agentes
comunicantes en smartphones, tabletas, ordenadores portátiles, routers y otros dispositivos, para
llevar a cabo tareas colaborativas, que generen aplicaciones modernas en diferentes áreas de interés.
Por ejemplo, cúmulos de part́ıculas en dispositivos corporativos de empresas recolectando infor-
mación sobre tráfico, virus de software, localizaciones y datos loǵısticos, flujo humano en grandes
superficies, preferencias comerciales, puntos de interés tuŕıstico, etc. Todo esto nos llevaŕıa a la
creación de aplicaciones modernas basadas en un modelo de swarm intelligence. En este sentido,
intentaremos utilizar directamente escenarios reales para la evaluación de nuestras aplicaciones,
con la intención final de asistir en la toma de decisiones a los expertos en cada área.
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