New load balancing strategy for solving Per mutation
Flow Shop Problem Using Grid Computing

Samia Koukl, Talel Ladharf® and, Mohamed Jentni

! High School of Sciences and Technics of Tunis, Reselaboratory LATIC.
Tunis, Tunisia.
Samia.kouki@esstt.rnu.tn mohamed.jemni@fst.rnu.tn
2 ROI — Combinatorial Optimization Research Groupyfehnic School of Tunisia, B.P. 743,
2078, La Marsa, Tunisia
3Princess Fatimah Al-Nijriss Research Chair for AdwhManufacturing Technologies,
Department of Industrial Engineering, College of lBegring, King Saud University, PO Box
800 Riyadh 11421, Saudi Arabia.
talel_ladhari2004@yahoo.fr

Abstract. This paper describes two parallel algorithms sgvihe m-
machines, n-jobs permutation flow shop schedulirgplem (PFSP) deployed
in the French national grid Grid’5000. The firsgadithm calledGAUUB uses
the Branch and Bound method to find optimal solutiohghe problem and
distributes the tasks among all processors. Thenskealgorithm calledALB is

an improvement of th6&AUUB algorithm based on a parallelization strategy
ensuring better load balancing between the procesand therefore, better
efficiency of the algorithm. Computational resultstbe GAUUB algorithm
performed on the grid showed good results and feignit improvements of our
initial algorithm thanks to our load balancing tetue.

1 I ntroduction

The optimization of scheduling problems can be #aee different criteria to
optimize, but the mainly target used in the literatis the minimization of completion
time of the last task on the last machine calletespan. In this paper, we deal with
the permutation flow shop scheduling problem (PF8Rjch is a combinatorial
optimization problem. In this problem we have tdedmine the best solution for
schedulingn jobs inm machines, which minimized the total completionditfthe
Makespan)f the scheduleG,) this problem is denoted||C,.) and is known to
be strongly NP-hard. The most known exact methoddtving such a problem is the
Branch and Bound. Nevertheless, this method igddn as it can solve only small
size instances. Because of the large size of hdnglleblems, finding an optimal

Kouki, S., Ladhari, T., and Jemni, M.

solution using a single machine can be impossiblesbme instances of data. Thus,
there exist two approaches which can help us teestdrge size instances in an
acceptable time: approximate methods and paralethods. Many previous work
deals with the parallel Branch and Bound methoaperted in [1] by Crainic and all.
Thanks to the huge number of resources providethdyrid of computers, it seems
to be a suitable architecture to solve such kindpafblems (strongly NP-hard
problems) and especially the permutation flow shogblem, as it still exists many
instances of Taillard which are not yet solved [2].

The high computing time of the PFSP solved by B&Boethm is due to the
computation of bounds which accomplished at eacterud the search tree. The size
of this tree is huge and can attempt several b#liof nodes. Furthermore, not all
combinatorial optimization problems can be parilsal, since this depends strictly
on the nature and the characteristics of the prolitetreat, and in particular on the
quality of the upper and lower bounds.

2 Our first algorithm : Grid Algorithm Updating the Upper
Bound (GAUUB)

Our implemented algorithm is based on updatingugiiger bound value in order to
make the algorithm converging rapidly to the optis@lution. In this paper we use
the depth first strategy. Our parallelization €gst is based on dividing the PFSP to
many sub-problems to be performed independently simdiltaneously by different
processors [3]. However, the parallel executionthef B&B solving the PFSP, can
lead to the treatment of some needless sub problespecially, when sub problems
are treated in parallel, although some of thesblpros may be pruned in sequential
execution. For this reason, in our algorithm wedus@ intelligent technique to
distribute and update the upper bound values ierareduce the size of the search
tree and therefore to obtain as quickly as possit#eoptimal solution.

We implemented our algorithm with C language; weduslso the MPI library
(Message Passing Interface) in order to ensure eonwation between processors.
All the computational results were carried on thierieh national Grid (Grid’5000)
[4]. In order to test and improve the scalabilifyowr algorithms, we used the well
known Taillard’s benchmarks. These instances aosvk to be very hard and about a
decade after their publication, many of them arn# epen (instances with 20

New load balancing strategy for solving Per mutation
Flow Shop Problem Using Grid Computing

machines and some others with 10 machines). We alsedthese instances in our
previous works [5,6].

The experimentation study of our algoritt@AUUB, shows clearly the contribution
of parallelism to improve execution times of margrchinstances which have not
been solved in single processor. But by analyzirenymresults obtained in our
experimental study we noticed that when severaka@ie pruned from the first level
of the search tree, the use of parallelism is ®oy wignificant. However, when the
processors share the workload that is normallygassi to a single processor, we can
achieve reasonable running times for some instafzesed on such observations, we
propose in the next section our new algorithm dalgrid Algorithm with Load
Balancing GALB), in order to remedy the unbalancing load of pssoes in the
GAUUB algorithm.

3 Our new algorithm : Grid Algorithm with Load Balancing
(GALB)

This algorithm called Grid Algorithm with Load Baleing (GALB), is an
improvement of our previous algorithm (GAUUB) bytaddishing an efficient load
balancing technique between all the available mames. This algorithm is based on
the master/slave paradigm and is composed of twia staps. The first step is done
by the master processor and is performed in sentl a level L of the search tree.
The goal of this step is to generate a large amoiwbrk (many nodes to explore) to
distribute among the slaves processors and themtanty a load balancing between
all processors. The master assigns the unexplarédsnto the processors, ordered by
the ranks of processors. Then all processors execlaical B&B.

Furthermore, the second step is accomplished irllphr by all the available
processors (slaves). Each processor will giventhwe solution to the master in order
to update the global Upper bound.

Once a processor completes the task assigneditaeguests data from the master
and so on. Indeed, in the algorithm GALB, we ndiattthe processors finish at
almost the same time and therefore, that meansathairocessors participate in
solving the problem during almost the same durafidre use of the GALB algorithm
gives two advantages, first distributing the loadbas the majority of processors and

Kouki, S., Ladhari, T., and Jemni, M.

second reduce the execution time, which may allswowsolve more complicated and
hard instances of data.

Experimental study of our new algorithm deployedtws National French Grid: Grid
5000 confirmed the improvement of load balancewfrew algorithm and therefore
the improvement of its performance. For instante, éxecution time of the the
instance Tail0106 on 50 processors using@A&JUB algorithm is about 105 seconds
whereas the resolution of the same instance byGA&B algorithm using 50
processors requires only 14 seconds as showed) ih

Run time
16
1
1
10
8
b
4 BRuntime
115 s e B R e e s s s B s s e |
DmmqumMmmﬁﬁNMQm\DhmDﬁNlﬂlﬂh[ﬂmoﬁQWhmmVDﬁNMvmmhmmmhmm
A ANAN L MM AR A A A A A ANNN N NN AN NN NN F T TTTTTT e
LLLLL 0 L as.s.s.s.s.s.s.s.s.l.s.s.s.|.uuuuuuhuuﬁuuuuhuuhhaﬁaaa
R EEEEE R R R R EEREEEEEEEREREEEEEEEE RN
LA A A R I A A I O O N O O A O O O A A A I O A B I R
vevoewoe UowoeoeUoveowoeoeoove sovoe oo ueowoeeovodeooeweveeUOUUuw
VuUuvuuuwgpguUUUUDODUUVUUDUUUULUULDUUDUUUUDUVUUUpDUUUUUUUUURgOODOO
0 0O0OOQO-00Q00OQ-S000000O0CO0O0CO0O0O000Q0Q00000D0000-000000000&% -z
_____ z o A e A G A S A W N - Y
Looon [R [N N O A A A N N N N A O [T R T R« O R N O

Fig. 1. Charge of the processors in the GALB algorithm (IE0I6)

References

1. Gendron, B., Crainic, T. G. : Parallel B&B Algorithnm8urvey and synthesis. Operat
Research, Vol. 42, No. 6, pp. 1042--1066, Noverilmrember (1994).

2. Taillard, E. :Benchmarks for basic scheduling protdeEuropean Journal of Operatic
Research, vol. 64, pp. 278--285, (1993).

3. Kouki, S., Jemni, M., Ladhari, T: Deployment of Solving Permutation Flow St

Scheduling Problem on the Grid. Conference on Gnidl Ristributed Computing (GD(

2010, LNCS, Springer, December 13-15, 2010, JeantslKorea.

www.grid5000.fr/

Kouki, S., Jemni, M., Ladhari, T.Design of parallel distributed algorithm for f

Permutation Flow Shop ProblemConférence internationale sur les NOuve

TEchnologies de la REpartition (NOTERE) IEEE, pp:®, 31 May2 June, 201(

Tozeur, Tunisia.

6. Kouki, S., Jemni, M., Ladhari, TA Parallel Distributed Algorithm for the Permutat
Flow Shop Scheduling Problem. International Confeeeon Algorithms and Architectur
for Parallel Processing (ICA3PP), LNCS, Springer3@p-337, May 2123, 2010, Busal
Korea.

S

7. Kouki, S., Ladhari, T., Jemni, M.Solving the Permutation Flow Shop Problem \
Makespan Criterion using Griditernational Journal of Grid and Distributed Cortipg
Vol. 4, No. 2, June, 2011.

