
New load balancing strategy for solving Permutation
Flow Shop Problem Using Grid Computing

Samia Kouki1, Talel Ladhari 2,3 and, Mohamed Jemni1

1 High School of Sciences and Technics of Tunis, Research Laboratory LATIC.

Tunis, Tunisia.
Samia.kouki@esstt.rnu.tn mohamed.jemni@fst.rnu.tn

 2 ROI – Combinatorial Optimization Research Group, Polytechnic School of Tunisia, B.P. 743,
2078, La Marsa, Tunisia

3 Princess Fatimah Al-Nijriss Research Chair for Advanced Manufacturing Technologies,
Department of Industrial Engineering, College of Engineering, King Saud University, PO Box

800 Riyadh 11421, Saudi Arabia.
talel_ladhari2004@yahoo.fr

Abstract. This paper describes two parallel algorithms solving the m-
machines, n-jobs permutation flow shop scheduling problem (PFSP) deployed
in the French national grid Grid’5000. The first algorithm called GAUUB uses
the Branch and Bound method to find optimal solutions of the problem and
distributes the tasks among all processors. The second algorithm called GALB is
an improvement of the GAUUB algorithm based on a parallelization strategy
ensuring better load balancing between the processors and therefore, better
efficiency of the algorithm. Computational results of the GAUUB algorithm
performed on the grid showed good results and significant improvements of our
initial algorithm thanks to our load balancing technique.

1 Introduction

The optimization of scheduling problems can be based on different criteria to

optimize, but the mainly target used in the literature is the minimization of completion

time of the last task on the last machine called makespan. In this paper, we deal with

the permutation flow shop scheduling problem (PFSP) which is a combinatorial

optimization problem. In this problem we have to determine the best solution for

scheduling n jobs in m machines, which minimized the total completion time (the

Makespan) of the schedule (Cmax) this problem is denoted (F||Cmax) and is known to

be strongly NP-hard. The most known exact method for solving such a problem is the

Branch and Bound. Nevertheless, this method is limited, as it can solve only small

size instances. Because of the large size of handled problems, finding an optimal

 Kouki, S., Ladhari, T., and Jemni, M.

solution using a single machine can be impossible for some instances of data. Thus,

there exist two approaches which can help us to solve large size instances in an

acceptable time: approximate methods and parallel methods. Many previous work

deals with the parallel Branch and Bound method as reported in [1] by Crainic and all.

Thanks to the huge number of resources provided by the grid of computers, it seems

to be a suitable architecture to solve such kind of problems (strongly NP-hard

problems) and especially the permutation flow shop problem, as it still exists many

instances of Taillard which are not yet solved [2].

The high computing time of the PFSP solved by B&B algorithm is due to the

computation of bounds which accomplished at each node of the search tree. The size

of this tree is huge and can attempt several billions of nodes. Furthermore, not all

combinatorial optimization problems can be parallelized, since this depends strictly

on the nature and the characteristics of the problem to treat, and in particular on the

quality of the upper and lower bounds.

2 Our first algorithm : Grid Algorithm Updating the Upper
Bound (GAUUB)

Our implemented algorithm is based on updating the upper bound value in order to

make the algorithm converging rapidly to the optimal solution. In this paper we use

the depth first strategy. Our parallelization strategy is based on dividing the PFSP to

many sub-problems to be performed independently and simultaneously by different

processors [3]. However, the parallel execution of the B&B solving the PFSP, can

lead to the treatment of some needless sub problems. Especially, when sub problems

are treated in parallel, although some of these problems may be pruned in sequential

execution. For this reason, in our algorithm we used an intelligent technique to

distribute and update the upper bound values in order to reduce the size of the search

tree and therefore to obtain as quickly as possible the optimal solution.

We implemented our algorithm with C language; we used also the MPI library

(Message Passing Interface) in order to ensure communication between processors.

All the computational results were carried on the French national Grid (Grid’5000)

[4]. In order to test and improve the scalability of our algorithms, we used the well

known Taillard’s benchmarks. These instances are known to be very hard and about a

decade after their publication, many of them are still open (instances with 20

New load balancing strategy for solving Permutation
Flow Shop Problem Using Grid Computing

machines and some others with 10 machines). We used also these instances in our

previous works [5,6].

The experimentation study of our algorithm GAUUB, shows clearly the contribution

of parallelism to improve execution times of many hard instances which have not

been solved in single processor. But by analyzing many results obtained in our

experimental study we noticed that when several nodes are pruned from the first level

of the search tree, the use of parallelism is not very significant. However, when the

processors share the workload that is normally assigned to a single processor, we can

achieve reasonable running times for some instances. Based on such observations, we

propose in the next section our new algorithm called Grid Algorithm with Load

Balancing (GALB), in order to remedy the unbalancing load of processors in the

GAUUB algorithm.

3 Our new algorithm : Grid Algorithm with Load Balancing

(GALB)

This algorithm called Grid Algorithm with Load Balancing (GALB), is an

improvement of our previous algorithm (GAUUB) by establishing an efficient load

balancing technique between all the available processors. This algorithm is based on

the master/slave paradigm and is composed of two main steps. The first step is done

by the master processor and is performed in serial until a level L of the search tree.

The goal of this step is to generate a large amount of work (many nodes to explore) to

distribute among the slaves processors and then to warranty a load balancing between

all processors. The master assigns the unexplored nodes to the processors, ordered by

the ranks of processors. Then all processors execute a local B&B.

Furthermore, the second step is accomplished in parallel, by all the available

processors (slaves). Each processor will give the new solution to the master in order

to update the global Upper bound.

Once a processor completes the task assigned to it, it requests data from the master

and so on. Indeed, in the algorithm GALB, we note that the processors finish at

almost the same time and therefore, that means that all processors participate in

solving the problem during almost the same duration. The use of the GALB algorithm

gives two advantages, first distributing the load across the majority of processors and

 Kouki, S., Ladhari, T., and Jemni, M.

second reduce the execution time, which may allow us to solve more complicated and

hard instances of data.

Experimental study of our new algorithm deployed on the National French Grid: Grid
5000 confirmed the improvement of load balance of our new algorithm and therefore
the improvement of its performance. For instance, the execution time of the the
instance Tail0106 on 50 processors using the GAUUB algorithm is about 105 seconds
whereas the resolution of the same instance by the GALB algorithm using 50
processors requires only 14 seconds as showed in Fig 1.

Fig. 1. Charge of the processors in the GALB algorithm (Tail0106)

References
1. Gendron, B., Crainic, T. G. : Parallel B&B Algorithms: Survey and synthesis. Operation

Research, Vol. 42, No. 6, pp. 1042--1066, November-December (1994).
2. Taillard, E. :Benchmarks for basic scheduling problems. European Journal of Operational

Research, vol. 64, pp. 278--285, (1993).
3. Kouki, S., Jemni, M., Ladhari, T. l: Deployment of Solving Permutation Flow Shop

Scheduling Problem on the Grid. Conference on Grid and Distributed Computing (GDC)
2010, LNCS, Springer, December 13-15, 2010, Jeju Island, Korea.

4. www.grid5000.fr/
5. Kouki, S., Jemni, M., Ladhari, T.: Design of parallel distributed algorithm for the

Permutation Flow Shop Problem. Conférence internationale sur les NOuvelles
TEchnologies de la REpartition (NOTERE) IEEE, pp : 65-72, 31 May-2 June, 2010,
Tozeur, Tunisia.

6. Kouki, S., Jemni, M., Ladhari, T.: A Parallel Distributed Algorithm for the Permutation
Flow Shop Scheduling Problem. International Conference on Algorithms and Architectures
for Parallel Processing (ICA3PP), LNCS, Springer, pp 328-337, May 21-23, 2010, Busan,
Korea.

7. Kouki, S., Ladhari, T., Jemni, M., :Solving the Permutation Flow Shop Problem with
Makespan Criterion using Grids. International Journal of Grid and Distributed Computing
Vol. 4, No. 2, June, 2011.

