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Abstract. The development and study of a parallel implementation of
the graph-based local elimination algorithms on novel emergent parallel
GPU-based architectures for solving sparse discrete optimization (DO)
problems are discussed.
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1 Introduction

The use of discrete optimization (DO) models and algorithms makes it possible
to solve many real-life problems in scheduling theory, optimization on networks,
routing in communication networks, facility location in enterprize resource plan-
ing, and logistics. Applications of DO in the artificial intelligence field include
theorem proving, SAT in propositional logic, robotics problems, inference calcu-
lation in Bayesian networks, scheduling, and others.

Even on contemporary serial computers solving combinatorial optimization
problems is somewhat limited from a computational point of view. Parallel pro-
cessing computers could greatly reduce the computation time for solving large-
scale DO problems since there are a number of parallel operations that occur in
solving DO problem. Due to the high computational requirements and inherent
parallel nature of DO search techniques, there has been a great deal of interest
in the development of parallel DO search methods since the dawn of parallel
computing [5].

Decomposition DO algorithms are prime candidates for parallelization. As
Bertsekas and Tsitsiklis [3] (p.225) mentioned, ”When a parallel computing sys-
tem is available, decomposition methods typically become even more attractive
because the simple subproblems can be solved in parallel”.

A graph-based unifying framework for the main structural DO decomposi-
tion algorithms is provided in [11] that allows to unify and clarify the notation
and algorithms of various structural DO decomposition approaches, and to ac-
commodate constraint satisfaction technology transfer.
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Among decomposition approaches appropriate for solving sparse DO prob-
lems we mention local elimination algorithms (LEA) using the special block
matrix structure of constraints and nonserial dynamic programming algorithms
(NSDP) [2], which can exploit sparsity in the dependency graph of a DO problem
and allow to compute a solution in stages such that each of them uses results
from previous stages. (LEA) compute global information using local compu-
tations (i.e., computations of information about elements of neighborhoods of
variables or constraints).

The main disadvantage of the LEAs, its great computational complexity for
DO problems with high size of separators, can be reduced with parallel pro-
cessing on clusters of workstations. The main problem is the large size of the
separator, which separates the various blocks because a volume of enumeration
is exponential on size of the separator. In order to reduce the amount of enumer-
ation, postoptimality analysis can be used, since DO problems in the package,
that corresponds to a block, differ in right-hand sides. However, our experiment
showed a slight decrease in run time when using postoptimality analysis [12].
Another possibility to cope with the challenges posed by the large size separa-
tors is to develop approximate versions of the local algorithm, which does not
completely enumerate all possible values of the variables included in the separa-
tor, but only partially. Thus, the only one way to implement and use exact local
elimination algorithms for sparse DO problems with large separators is using of
parallelization. Parallelization in DO can help to cope with this drawback using
the possibility of parallel solving of DO problems in blocks.

The elimination tree [13] serves to characterize the parallelism in solving
DO problems with LEA. In particular, the height of the elimination tree gives
a rough measure of the parallel computation time. Thus, the elimination tree
structure provides information on data dependency in DOP. It captures the
essential ingredient for parallel elimination. An ordering of the elimination tree
is a topological ordering where each node is numbered higher than all of its
descendants.

There are various computational schemes for realizing the LEA, including
the LEA of variables elimination, block-elimination algorithm, LEA based on
tree decomposition. In LEA of variables elimination (nonserial dynamic pro-
gramming), a variable is chosen, all the components of objective function and
constraints that involve this variable are removed from the problem, and the
marginal of the combination of these functions on the rest of the problem is
added to the original problem. The problem obtained has one less variable and
the same optimal objective function as the original problem [11]. By repeatedly
eliminating all variables, we ultimately get the optimal objective function.

Instead of eliminating one variable after the other, one may eliminate several
variables at once. This is called block elimination [2], [11]. To implement the
block LEA, it is possible to use a tasks dependency graph which is indeed a tree,
that must be processed from the leaves to the root.

Two sources of parallelization can be used in this process: the dominating
one is based on partial problem assignments in separators, the second one comes
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from the branching of the tree-decomposition itself. Thus, there are two types
of parallelism available in structural decomposition algorithm:

1) Parallelism of type 1 introduces parallelism when performing the oper-
ations on generated subproblems (in blocks). It consists of solving each DO
subproblem in parallel for each block to accelerate the execution.

2) Parallelism of type 2 consists of processing the elimination tree in parallel
by performing operations on several subproblems simultaneously. Independent
branches of the elimination tree can be processed in parallel, and we refer to
this as type 2 parallelism or tree parallelism. It is obvious that in general, tree
parallelism can be exploited more efficiently in the lower part of the elimination
tree than near the root node.

Nowadays, the novel emergent parallel computing architectures such as mul-
ticore processors, graphics processing units (GPUs), and grid environments pro-
vide new opportunities to apply parallel computing techniques to improve the
local elimination algorithms search results and to lower the required computation
times.

GPU programming has become increasingly popular in the scientific commu-
nity during the last few years. In the early days, GPGPU programs used the nor-
mal graphics APIs for executing programs [9]. The Khronos Group has released
the OpenCL3 specification, which is a framework for writing programs that exe-
cute across platforms consisting of CPUs and GPUs. Other than OpenCL, there
exist other frameworks that allow platform-independent programming for GPUs:
1) CUDA4, 2) DirectCompute from Microsoft, 3) OpenGL Shading Language
(GLSL). DirectCompute is specific to Microsoft Windows and therefore it is not
portable between host Operating System (OS). GLSL does not have the scientific
focus. OpenCL is an open standard that can be used to program CPUs, GPUs,
and other devices from different vendors, while CUDA is specific to NVIDIA
GPUs. OpenCL offers portability across GPU hardware, OS software, as well
as multicore processors. Therefore OpenCL is our choice of implementing algo-
rithms for structural decomposition of sparse discrete optimization problems.

To survey publications dedicated to parallel GPU-based DO algorithms we
mention following works. A survey [10] on parallel ant colony optimization con-
tains 106 references. Ant Colony Optimization is a population-based metaheuris-
tic for solving optimization problems. Master-worker parallel ACO implementa-
tions have been quite popular mainly due to the fact that this model is conceptu-
ally simple and easy to implement. Luong et al. (2011) [8] reported about GPU-
based parallel heuristics (such as Local Search Algorithms, Evolutionary Algo-
rithms). Boyer et al. (2012) [4] proposed a parallel implementation via CUDA
of the dense dynamic programming method for knapsack problems on a multi
GPU system. Fujimoto, N. and Tsutsui, S. (2010) [6] develop highly-parallel
TSP solver for a GPU computing platform. Satisfiability. Gulati and Khatri [7]
Boolean Satisfiability on a Graphics Processor implemented a new variable or-

3 OpenCL = Open Computing Language, see OpenCL: The open standard for parallel
programming of heterogeneous systems. http://www.khronos.org/opencl

4 CUDA = Compute Unified Device Architecture
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dering approach in a complete procedure of solving SAT problem (MiniSAT),
which runs on the CPU. Beckers et al. [1] considered parallel SAT-solving with
OpenCL parallel programming environment and implemented a massively par-
allel SAT-solver on GPU.

We propose to use for parallel LEA implementation a hybrid master-worker
system allowing the concurrent use of CPUs and GPUs. The GPUs, many core
parallel machines with shared memory, act as the workers and perform solving
DO subproblems for blocks. Synthesis of solution is performed by the CPU which
has the role of the master.
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