
Computing UIO Sequences using Parallel GAs ?

Qiang Guo, John McCall and Horacio González-Vélez

IDEAS Research Institute/School of Computing
The Robert Gordon University

Abstract. Unique Input/Output (UIO) sequence is an important state verifica-
tion technique in Finite State Machine (FSM) based testing. Computing UIOs is
NP-hard. Genetic Algorithms (GAs) were applied to compute UIOs [1] where an
objective function is defined to guide GAs to search UIOs. The technique was
experimentally evaluated for its effectiveness but also shown for its high com-
putational cost. In this paper, we look at computing UIOs using parallel GAs.
By making use of multicore resources, we intend to improve computational per-
formance. Two parallel GA models were proposed. The models explore parallel
patterns from GAs and FSMs and map them to the available multicore processors.

Keywords: UIOs, Finite State Machine, GA; Parallel Patterns, Multicore.

1 Introduction
Finite state machines (FSMs) have been widely used in system modelling and testing.
In FSM-based testing, Unique Input/Output (UIO) sequence is an important technique
for state verification. However, computing UIOs is NP-hard. Guo et al. investigated
constructing UIOs using Genetic Algorithms (GAs) [1]. Based on the patterns of State
Splitting Trees (SSTs) [2], an objective function was defined to guide a GA to explore
UIOs from the FSMs under test. The model was experimentally evaluated for the effec-
tiveness in finding UIOs, but also showed high computational cost.

Deriving the SST for an input sequence seqi requires that seqi executes M once
for each of its n states as the initial state (moving M from s0 to si). This leads to
a high computational cost in finding UIOs from FSMs with a large number of states.
Moreover, a large GA population size makes the computation even more expensive. To
alleviate the computational burden and achieve a higher computational performance, it
is desirable to make use of high performance resources such as multicore processors to
undertake such computationally expensive tasks. To do so, the proposed model must be
designed and implemented to be suitable for parallel computing.

This paper investigates computing UIOs under multicore systems. Two parallel
GA models are proposed to compute UIOs. By extending existing micro-grained and
coarse-grained models [3], the proposed models explore parallel patterns from both
GAs and SSTs. The parallel patterns are mapped to the available multicore processors.
With such parallel operations, computational performance is expected to be improved.

2 Backgound
2.1 FSM and UIOs

A (deterministic) FSM M is defined as a 6-tuple M = (I , O, S, δ, λ, s0) where I is a
non-empty set of inputs, O a non-empty set of outputs, S a finite and non-empty set of
? Work funded by the FP7 project ParaPhrase, under contract no.: 288570



2 Q. Guo, J. McCall and H. González-Vélez

states, δ the transition function, δ : S × I → S, λ the output function, λ : S × I → O,
and s0 the initial state.

In FSM based testing, a standard testing strategy is defined in two steps: the tran-
sition Input/Outpt (I/O) check and the tail state verification. The former determines
whether a transition of an implementation under test (IUT) produces the expected out-
put while the latter checks that the IUT arrives at the specified state when a transition
test is finished. UIO sequence is a very important technique applied for state verifica-
tion. A UIO sequence of state si is an I/O sequence x/y, that may be observed from si ,
such that the output sequence produced by the machine in response to x from any other
state is different from y, i.e. λ(si, x) = y and λ(sj , x) 6= y for any i 6= j.

A pre-requirement of UIO based testing is that at least one UIO sequence is avail-
able for each state si. However, computing UIOs is NP-hard. A State Splitting Tree
(SST) based approach [2] is designed to compute UIOs. Figure 1 explains the approach
with an example where an FSM has 6 states, {s1, ..., s6} with an input set {a, b} and
an output set {x, y}. The tree starts with a root (N(0,0)) that contains the complete
set of states. Suppose, when responding to an input a, states {s1, s3, s5} produce x

Fig. 1. A state splitting tree from an FSM.
while {s2, s4, s6} produce y, then {s1, s3, s5} and {s2, s4, s6} are distinguishable by
a. Nodes N(1,1) and N(1,2) are created. If we then apply b, the state reached from s1
by a produces x, while the states reached from {s3, s5} by a produce y. Thus ab dis-
tinguish s1 from {s3, s5}. Nodes N(2,1) and N(2,2) are created. Repeating this process,
we can get all discrete partitions as shown in Figure 1. A path from a discrete partition
node to the root node forms a UIO for the state related to this node.

2.2 Computing UIOs with GAs

Finding inputs to construct SSTs is also NP-hard. Guo et al. thus investigated con-
structing UIOs using GAs [1]. Based upon the patterns of SSTs, an objective function
is defined to guide a GA to explore UIOs. While applying an input sequence to an FSM,
at each stage of a single input, the constructed SST is evaluated by Equation 1

fi =
xie

(δxi)

lγi
+ α

(yi + δyi)

li
(1)

where i refers to the ith input. xi denotes the number of existing discrete partitions, δxi
the number of new discrete partitions caused by the ith input, yi the number of existing
separated groups, δyi the number of new groups, li the length of the input sequence up
to the ith element, while α, γ are constant settings.



Computing UIOs using Parallel GAs 3

Equation 1 consists of an exponential part, fe(i) = xie(δxi)/lγi , and a linear part, fl(i)
= α(yi + δyi)/li. We can see that the occurrence of discrete partitions makes xi and
δxi increase. This leads to xie(δxi) being increased exponentially, which contributes
to increasing fe(i) exponentially; the increment of li makes lγi decrease exponentially,
which reduces fe(i) exponentially. As long as xie(δxi) has a faster dynamics than lγi ,
fe(i) will be increased exponentially; otherwise, fe(i) decreases exponentially.

The exponential part encourages the early occurrence of discrete partitions and pun-
ishes the increment of an input sequence’s length. The linear part rewards partitioning
when discrete partitions have not been produced. This favours the discovery of more
UIOs in the next partitioning. The overall fitness value is defined as f = 1

N ×
∑N
i=1(fi)

where N is the length of the sequence.

3 Computing UIOs with Parallel GA Frameworks
The model defined in [1] is effective in finding UIOs but computationally expensive,
especially when an FSM has a large number of states. Early experiments showed, for an
FSM with 12 states, with a population size of 600, it requires nearly 8 hours to complete
the computation for 300 generations in a single PC. To alleviate computational burden,
high performance computational resources such as multicore processors are useful. To
make use of these resources, parallelisms must be defined to make the model suitable
for parallel computing.

Two models have been proposed to parallelise GAs [3]. The Micro-Grained (GM)
model defines a master-slave structure. A master processor is applied to execute all ge-

Fig. 2. SST based micro-grained model.

netic operations except evaluations while a set of slave processors are devised to evalu-
ate individuals in parallel. The Coarse-Grained (CG) model is a distributed population
model. This model splits the population into multiple subpopulations where individuals
in a subpopulation are evaluated and optimised by a GA within this subpopulation, but
can also be migrated to another subpopulation.



4 Q. Guo, J. McCall and H. González-Vélez

Both GM and CG models can be used to compute UIOs under multicore environ-
ments. It can be noted that the model defined in [1] favours the construction of SSTs

Fig. 3. SST based coarse-grained model.

in a parallel fashion. Thus, in this work, we extend the GM and CG models by inte-
grating SST parallelisms. The extended models are presented in Figure 2 and 3 where
both models consist of two layers of parallelism, namely, GA parallelism and SST paral-
lelism. With such an operation, computational tasks can be further split and parallelised.
This helps to maximise the use of the available multicore resources.

4 Summary and Future Work

This paper proposes two parallel GA models used to compute UIOs under multicore
environments. Our work extends two existing parallel models, the GM model and the
CG model, by integrating an SST parallelism layer. By doing so, the extended models
promote maximum use of the available multicore resources for computing UIOs.

We are currently implementing the proposed models in C++ using OpenMP and
MPI, and developing case studies to evaluate the computational performance. It has
also been planned to integrate the models to a proven parallel framework FastFlow [4]
which is specifically designed for cache-coherent shared-memory multicore systems.

References

1. Guo, Q., Hierons, R.M., Harman, M., Derderian, K.: Constructing multiple unique in-
put/output sequences using metaheuristic optimisation techniques. IEEE Proceedings - Soft-
ware 152 (2005) 127 – 140

2. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines - a survey.
Proc. IEEE 84 (1996) 1090 – 1122

3. Hiroyasu, T., Yamanaka, R., Yoshimi, M., Miki, M.: A framework for genetic algorithms in
parallel environments. IPSJ SIG Notes 84 (2011) 1 – 6

4. Aldinucci, M., Danelutto, M., Kilpatrick, P., Meneghin, M., Torquati, M.: Accelerating Code
on Multi-cores with Fastflow. In: Euro-Par 2011. Volume 6853 of LNCS. (2011) 170–181


	Computing UIO Sequences using Parallel GAs 
	Qiang Guo, John McCall and Horacio González-Vélez

