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Abstract. The goal of this paper is to study the applicability of a com-
binatorial optimization model in grid resource optimization. The advent
of grid computing and demand for QoS guarantees call for a need of
advance reservation mechanisms in order to coordinate resource sharing
between autonomous partners. This term means the guarantee of pro-
viding specific resources at a specific time. The paper assumes that grid
resource sharing can greatly benefit from the application of combina-
torial optimization for improving the advance reservation mechanisms.
Specifically, the temporal knapsack problem is used for modeling the
advance reservation. For improving the QoS guarantees and efficient ad-
vance reservation, a new methods based on dynamic programming and
a decomposition of the temporal knapsack problem is developed.
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1 Introduction

Grid computing is a form of parallel computing, whereby a network of loosely
coupled computers act in concert to perform very large and complex tasks; these
computers function together as a ”virtual supercomputer”. The tasks solved
by grids need to process large amounts of data and require a great number of
computer operations. The primary advantage of grid computing is that it can
produce parallel computations similar to a multi-processor supercomputer, but
at lower cost.

Grids are promising computing platforms that allow to aggregate distributed
resources such as workstations and clusters to solve large-scale problems. The
grid technology enables resource sharing and dynamic allocation of computa-
tional resources, thus increasing access to distributed data, promoting opera-
tional flexibility and collaboration, and allowing service providers to scale effi-
ciently to meet variable demand.

With the emergence of grid technologies, the problem of scheduling tasks
in heterogeneous systems has arisen. Resource management in highly dynamic
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grid environments is not only about scheduling large and compute-intensive ap-
plications, but also the manner in which resources are allocated, assigned, and
accessed. In most systems, submitted jobs are initially placed into a queue if
there are no available resources. Therefore, there is no guarantee as to when
these jobs will be executed. This causes difficult problems in time-critical or
parallel applications where jobs may have interdependencies.

In this paper we discuss discrete models of resource allocation in grids and fo-
cus on the issues related to enhancing their QoS using methods of combinatorial
optimization.

2 Advance Reservation in Grid Computing

Unpredictable job execution environments pose a significant barrier to the widespread
adoption of the grid paradigm, because of the innate risk of jobs failing to ex-
ecute at the time specified by the user. Large-scale grids are complex systems
composed of thousands of components from disjoined domains. Planning the ca-
pacity to guarantee quality of service (QoS) in such environments is a challenge
because global service-level agreements (SLAs) depend on local SLAs. The ad-
vent of grid computing and demand for QoS guarantees call for a need of the
advance reservation (AR) mechanisms in order to coordinate resource sharing
between autonomous partners. In the most general sense, this term means the
guarantee of providing specific resources at a specific time. AR in a scheduling
system solves the above problem by allowing users to gain simultaneous and
concurrent access to adequate resources for the execution of such applications.
Currently, several Grid systems are able to provide AR functionalities, such as
GARA and ICENI.

The goal of AR is to deliver higher levels of QoS. The advance reservation
of grid resources can play a key role in enabling grid middleware to deliver on-
demand resource provision with significantly improved QoS. Furthermore, ad-
vance reservation enables grid resource management to optimize different QoS
parameters and enhance resource utilization with better capacity planning. How-
ever, in practice, concern about the AR has been insufficient mainly due to the
dynamic grid behavior, under-utilization concerns, multi-constrained applica-
tions, and lack of support for agreement enforcement. Moreover, the support for
advance reservations in grids has been restricted to processor reservations on
clusters or bandwidth reservation on high speed LANs.

Whereas most of academic Grid schedulers such as GridWay (http://www.gridway.org)
still lack the grid AR support, several commercial grid schedulers such as Moab
Cluster Manager (http://www.clusterresources.com/pages/products.php) and LSF
Multi-Cluster (http://www.platform.com/Products) can support Grid ARs.GridSim
is a Grid AR simulation environment built in the context of Gridbus project
(http://www.gridbus.org). GridSim can implement all Grid AR functionalities
defined in the Grid AR framework except for advanced query functions.

To summarize, the AR in Grid computing is an important research area as it
allows users to gain concurrent access to resources by allowing their applications



Grid Computing Systems and Combinatorial Optimization 3

to be executed in parallel. It also provides QoS guarantees on the availability of
resources at the specified times in the future.

3 Combinatorial Optimisation for Task Scheduling in
Grid Computing

Combinatorial optimisation approaches to task scheduling strategies for workflow-
based applications in grids include using hypergraph representation, modeling
advance resources reservation, taking the rationale of a grid resource manager
that maximises its utility by choosing the optimal set of customers orders. Ad-
vance reservation will play a major role in Grid systems [1]. A resources manager
manages some bounded resource, such as network bandwidth or computational
nodes. Since the resources are limited per time unit, the provider may be unable
to meet all demands, so the resources provider must choose which requests are
to be accepted. The idea here is to maximise the utility of the resources provider
by selecting an optimal subset of customers’ requests.

Grid system receives the customers’ priced requests and obtains the status of
potential resources from the grid or directly from the resources manager. Grid
system then computes an optimal selection of orders according to prices and
penalties. This selection is forwarded to the manager who notifies customers of
selection/rejection. Grid system acts as a particular web service used by the man-
ager to optimize its business. There is no direct connection between customers
and the grid system service. Customer orders use Start/End time; requested
QoS, i.e., amount of resources per time unit; price proposed for the service, and
penalty if QoS is not satisfied. This advance reservation will be modeled via
integer programming as a temporal knapsack problem (TKP)3 [2], where the
(hard) constraints ensure that QoS is maintained given bounded resources. In
the TKP a resource allocator is given bids for portions of a time-shared resource
(e.g. CPU time or communication bandwidth) or a space-shared resource (such
as computer memory, disk space etc.). Each bid specifies the amount of resource
needed, the time interval throughout which it is needed, and a price offered for
the resource. The resource allocator will, in general, have more demand than
capacity, so it has the problem of selecting a subset of the bids that maximizes
the total price or total utility obtained.

Here we consider optimal AR problems, where requests must be dynamically
allocated to limited resources in order to maximize profit.

In the TKP a resource allocator is given bids j = 1, . . . , n for portions of a
time shared resource – such as CPU time, or a shared space resource such as
computer memory, disk space, or communication bandwidth. Each bid specifies
the amount of resource qj needed, time interval [αj, βj] throughout which it
is needed, and profit cj obtained for the resource. At each time instant t, the
resource allocator will, in general, have a larger amount of resource demands
than capacity bt, t = 1, . . . , T , so it has the problem of selecting a subset of the
bids that maximises the total profit obtained.

3 This model named advance reservation model was earlier proposed in [6].
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Let us assume that the total number of bids, n, is known. Let us introduce
decision variables xj, j = 1, . . . , n: xj = 1 if bid j is selected, xj = 0 otherwise.

n∑
j=1

cjxj → max

∑
j∈Ft

qjxj ≤ bt, t = 1, . . . , T,

xj = 0, 1, j = 1, . . . , n

where Ft = {j : αj ≤ t ≤ βj}. The constraint matrix of the above problem is a
Petrie matrix 4.

To meet the challenge of solving large scale TKP problems in reasonable
time, we propose to apply for solving the AR problems structural decomposition
techniques developed in [17], exact routing methods with logical constraints [21]
and highly efficient approximation methods with performance guarantees earlier
developed in [15]. Structural decomposition algorithms compute global informa-
tion using local computations (i.e., computations of information about elements
of neighbourhood of variables or constraints – usually, solving subproblems)).
Among structural decomposition techniques are known nonserial dynamic pro-
gramming and its modifications: bucket elimination, tree decomposition method,
hypertree and hinge decomposition.
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