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1 Introduction

Many studies on evolutionary algorithms (EAs) rely on traditional execution en-
vironments with single memory and CPU, possibly extended to parallel and even
distributed environments, provided that there are certain conditions, such as syn-
chrony, homogeneity and centralized operations. However, in the last few years
the range of possible computational environments has been extended greatly, to
the point that it is possible to achieve a bigger computational raw performance
by creating ad hoc, loosely linked, and heterogeneous frameworks where EAs
can be run. One of such targets are the so-called volunteer computing or desk-
top grid environments, which have been used extensively so far in evolutionary
algorithms, for instance in [1].

Pool-based systems introduce a repository of solutions or pool, which can
be accessed in a distributed way, and in which all the population or a part of it
can be deposited. This supports a wide range of possible models, from a classical
and asynchronous island model in which the pool is used by all nodes in lockstep
to interchange individuals, to a data-flow based system in which nodes pick up
individuals from the pool and deposit results of the evolution back. It can even
support all of them at the same time. Since there is the possibility of decoupling
the population from the operations applied on them, pool EAs open the way for
completely novel evolutionary algorithm models.

Besides, several implementations are also possible: relational database sys-
tems or object stores, as well as file synchronization services such as Dropbox or
SugarSync. In this proposal for the workshop we will describe our work on this
kind of systems, its advantages and disadvantages, and what we can expect from
them. In any of them, pool EAs can easily scale to any number of nodes, since
new ones can be added without any special provision on the server or giving
notice to existing nodes; they can also leave by just stopping sending requests to
the server, which makes them amenable for volunteer computing as said above.



2 State of the Art

In this section we will examine pool-based distributed computing systems, mainly
those that have been applied to evolutionary algorithms. The most popular
model for asynchronous distributed algorithms is called A-teams, where A stands
for asynchronous [2]. A-Teams combine different algorithms that share a memory
in closed loops and are a way of specifying data flow among different methods to
solve a problem. A-Teams are not intrinsically evolutionary methods but have
been successfully applied in the last decades to a wide variety of problems [3];
their authors have released a toolkit that can be used to implement solutions
to different problems. A-Teams can be implemented in many different ways, but
they often refer to a pool or shared memory from which solutions (or sets of
them) can be drawn, improved and put back, or to where newly constructed
solutions can be shared among all the agents participating in the experiment.

Taking then one step down and entering the realm of the implementations
(away from the models exposed above), several authors have directly imple-
mented evolutionary algorithms in a pool based architecture, where the basic
idea is to use a (more or less persistent) store of solutions from which the evo-
lutionary algorithm draws its individuals, instead of having the population as a
data structure that is taken from one method to the next. The first papers in
the 90s used shared memory systems such as Linda [4]. Lately, multi-threaded
systems with a shared memory [5] have been proposed; this memory can be read
from all threads, but is divided in chunks writable by only one of the threads.
Relational database systems [6] have also been used, proving their capability for
avoiding algorithms with explicit synchronization and their fault-tolerance, at
least to client failure, providing a persistent storage for population from which
solutions can be, later on, retrieved. A database is, for instance, used in Dis-
tributed BEAGLE [7], which separates evolution and evaluation with a single
evolver client independent from the evaluator clients, both working with a central
database.

Even if the database is a single point of failure, this can be avoided by
replication; besides, the state of evolution is partially held by anyone of the
clients at a particular moment, so even in the event of a database failure all the
information is not lost.

3 Pool based EAs: Models

Being the basic operations in pool-based algorithms CRUD (create, read, update
and delete) functions, we have been working in two different types of models

– Pool contains the whole population, nodes are used for most operations. In
this type of algorithms, every node, using some criterium (such as plain avail-
ability of individuals ready for processing, or selection of the best) reads a set
of individuals, applies genetic operators, evaluation, or a single generation
to them and deposits the whole result in the pool, which is thus incremented
in each step, and until the end of the algorithm. Either the same node or



another must monitor the population to maintain a certain selective pressure
and keep the size in check. This was used in SofEA [8].

– Pool is simply used as a migration conveyor in an island-based evolutionary
algorithm. Evolutionary algorithms are run independently en each node and
these using different migration and incorporation policies, send some indi-
viduals to the pool and pick up from it others to be incorporated (or not,
according to policy) into the population. This approach was used in [9–11].

Both approaches have its merit: island-based models, since the amount of
operations on the pool are minimal, is scalable to a great amount of nodes; on
the other hand, using nodes for a single operation (of whatever complexity) is
more fault tolerant, since the state of the algorithm is in several nodes at the
same time.

4 Pool based EAs: Implementations

As mentioned above, any system that supports CRUD operations can be used
to implement a pool. However, the systems used by us so far fall into two broad
categories:

– Object stores, be them relational database systems [12] or NoSQL systems
[13]. In this case all nodes perform their operations remotely, using the sys-
tem programming interface.

– File synchronization systems (used in [11]) which maintain directories with
the same content. Nodes write individuals into these files or in particular files
within those directories; all communication is done through the directory
that is shared across all nodes.

The main advantage of maintaining a pool in a shared directory is the locality
of operations and its simplicity: writing a file is all that is needed, and it is
done at the speed of the local filesystem (which can be sped up as much as
possible). However, these commercial systems have their own synchronization
schedule, and synchronization is not usually immediate, which means systems
do not scale well unless experiments take a long time. Object stores, on the
other hand, have as their main disadvantage its latency; unless operations in
the nodes are significantly faster than the round-trip from node to pool, there
is little advantage in using them.

5 Conclusions

Pool-based EAs are a challenge from several points of view: mapping the tradi-
tional evaluation/reproduction/selection loop to a new architecture, and doing
so in a way that does not hinder scalability and then mapping this new algorithm
to a framework that is suitable for it. In this paper we have made an overview of
our work (and other’s) in this area, and expect to compare this kind of solutions
with other kind of distributed and parallel evolutionary algorithms.
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