logo NEO

 

ssGA: Steady State GA

Introduction ga.ssGA Package Download Code


ssGA is a simple and easy to use implementation of a Steady State Generic Algorithm. This algorithm generates a new individual in every step. The new individual is inserted in the population with his parents, and he always replaces to the worst individual (or he only replaces if he is better than the worst).

[ssGA] // Steady State Genetic Algorithm

proc Rep_Cicle (ga)
      for s<-1 to MAX_STEPS do
            parent1<- Select (ga.population);
            parent2<- Select (ga.population);
            Cross (ga.Pc,parent1,parent2,indiv_aux.chromosome);
            Mutate (ga.Pm,indiv_aux.chromosome);
            indiv_aux.fitness<-ga.Evaluate(Decode(indiv_aux.chromosome));
            Insert_New_Indiv (ga,indiv_aux, [if better | if worse]);
            Makes_Stadisticals (ga);
      end_for
end_proc Rep_Cicle;

 

 

Our Software

orangebox Mallba

orangebox DLOPT

orangebox epiGA

orangebox epiGApy

orangebox ssGA

orangebox JGDS

orangebox xxGA

orangebox JCell

orangebox MHTB

orangebox DEME

orangebox JMetal

orangebox More...

orangebox Go Back



J. Cabello Galisteo 2008